Vol. 114
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-10-13
High-Performance Microstructure Core Photonic Crystal Fibre-Based Biosensor for Alcohol Detection
By
Progress In Electromagnetics Research M, Vol. 114, 27-36, 2022
Abstract
A high-performance photonic crystal fibre-based alcohol biosensor is introduced for the selective test analytes: propanol, butanol, and pentanol operating at wavelengths ranging from 0.8 to 2.0 µm. The performance of the proposed sensor with the architecture of octagonal-shaped cladding air holes in two rings surrounding a single infiltrated hexagonal core hole produces high relative sensitivities, low confinement losses, small effective areas, and high nonlinear coefficients. At the optimal 1.4 µm wavelength, propanol, butanol, and pentanol assessed relative sensitivities of 93.10%, 93.95%, and 94.70%, respectively, and confinement losses of 6.38 × 10-10 dB/m for propanol, 2.12 × 10-10 dB/m for butanol and 1.04 × 10-10 dB/m for pentanol. Moreover, the nonlinear coefficients achieved results of 2446 W-1km-1 for propanol, 2703 W-1km-1 for butanol, and 2869 W-1km-1 for pentanol, at the optimum wavelength. These outstanding results of optical properties prove the potential and capabilities for practical sensing and optical communication applications.
Citation
Ang Chuan Shi, Abdul Mu’iz Maidi, Nianyu Zou, and Feroza Begum, "High-Performance Microstructure Core Photonic Crystal Fibre-Based Biosensor for Alcohol Detection," Progress In Electromagnetics Research M, Vol. 114, 27-36, 2022.
doi:10.2528/PIERM22051205
References

1. Rashed, A. N. Z., M. S. F. Tabbour, and P. Vijayakumari, "Numerical analysis of optical properties using octagonal shaped photonic crystal fiber," J. Opt. Commun., 2019.        Google Scholar

2. Mahfuz, M. Al., M. A. Mollah, M. R. Momota, A. K. Paul, A. Masud, S. Akter, and M. R. Hasan, "Highly sensitive photonic crystal fiber plasmonic biosensor: Design and analysis," Opt. Mater. (Amst)., Vol. 90, 315-321, 2019.
doi:10.1016/j.optmat.2019.02.012        Google Scholar

3. Rifat, A. A., M. R. Hasan, R. Ahmed, and H. Butt, "Photonic crystal fiber-based plasmonic biosensor with external sensing approach," J. Nanophotonics, Vol. 12, No. 1, 012503, 2017.
doi:10.1117/1.JNP.12.012503        Google Scholar

4. Islam, M. S., J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "A modified hexagonal photonic crystal fiber for terahertz applications," Opt. Mater. (Amst)., Vol. 79, 336-339, 2018.
doi:10.1016/j.optmat.2018.03.054        Google Scholar

5. Ahmed, K., M. Morshed, S. Asaduzzaman, and M. F. H. Arif, "Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber," Optik (Stuttg)., Vol. 131, 687-696, 2017.
doi:10.1016/j.ijleo.2016.11.171        Google Scholar

6. Cordeiro, C. M. B., A. K. L. Ng, and H. Ebendorff-Heidepriem, "Ultra-simplified single-step fabrication of microstructured optical fiber," Sci. Rep., Vol. 10, No. 1, 9678, 2020.
doi:10.1038/s41598-020-66632-3        Google Scholar

7. Dhanu Krishna, G., G. Prasannan, S. K. Sudheer, and V. P. Mahadevan Pillai, "Analysis of zero dispersion shift and supercontinuum generation at near IR in circular photonic crystal fibers," Optik (Stuttg)., Vol. 145, 599-607, 2017.
doi:10.1016/j.ijleo.2017.08.010        Google Scholar

8. Zhang, H., X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, "A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission," Opt. Commun., Vol. 397, 59-66, 2017.
doi:10.1016/j.optcom.2017.03.075        Google Scholar

9. Ahmed, K., B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. S. Amiri, and P. Yupapin, "Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application," Results Phys., Vol. 12, 2021-2025, 2019.
doi:10.1016/j.rinp.2019.02.026        Google Scholar

10. Medjouri, A., L. M. Simohamed, O. Ziane, and A. Boudrioua, "Investigation of high birefringence and chromatic dispersion management in photonic crystal fibre with square air holes," Optik (Stuttg)., Vol. 126, No. 20, 2269-2274, 2015.
doi:10.1016/j.ijleo.2015.05.119        Google Scholar

11. Hassan, M. M., M. A. Kabir, M. N. Hossain, T. K. Nguyen, B. K. Paul, K. Ahmed, and V. Dhasarathan, "Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission," Appl. Phys. B, Vol. 126, No. 9, 145, 2020.
doi:10.1007/s00340-020-07497-2        Google Scholar

12. Sultana, J., M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, "Highly birefringent elliptical core photonic crystal fiber for terahertz application," Opt. Commun., Vol. 407, 92-96, 2018.
doi:10.1016/j.optcom.2017.09.020        Google Scholar

13. Jibon, R. H., M. Ahmed, M. E. Rahaman, M. K. Hasan, M. M. Shaikh, and A. Tooshil, "Nicotine sensing by photonic crystal fiber in THz regime," 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 334-337, IEEE, 2021.
doi:10.1109/ICREST51555.2021.9331009        Google Scholar

14. Vishwakarma, R., P. Kumar, S. Saha, G. Rout, and J. S. Roy, "Zero dispersion photonic crystal fibers for nonlinear applications," 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-4, IEEE, 2017.        Google Scholar

15. Kumar, P., Rohan, V. Kumar, and J. S. Roy, "Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss," Optik (Stuttg)., Vol. 144, 363-369, 2017.
doi:10.1016/j.ijleo.2017.06.131        Google Scholar

16. Asaduzzaman, S., M. F. H. Arif, K. Ahmed, and P. Dhar, "Highly sensitive simple structure circular photonic crystal fiber based chemical sensor," 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 151-154, IEEE, 2015.
doi:10.1109/WIECON-ECE.2015.7443884        Google Scholar

17. Habib, M. A., M. S. Anower, A. AlGhamdi, O. S. Faragallah, M. M. A. Eid, and A. N. Z. Rashed, "Efficient way for detection of alcohols using hollow core photonic crystal fiber sensor," Opt. Rev., Vol. 28, No. 4, 383-392, 2021.
doi:10.1007/s10043-021-00672-6        Google Scholar

18. Ahmed, K., M. J. Haque, M. A. Jabin, B. K. Paul, I. S. Amiri, and P. Yupapin, "Tetra-core surface plasmon resonance based biosensor for alcohol sensing," Phys. B Condens. Matter, Vol. 570, 48-52, 2019.
doi:10.1016/j.physb.2019.05.047        Google Scholar

19. Paul, B. K., M. S. Islam, K. Ahmed, and S. Asaduzzaman, "Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber," Photonic Sensors, Vol. 7, No. 2, 123-130, 2017.
doi:10.1007/s13320-017-0376-6        Google Scholar

20. Ahmed, K., B. K. Paul, S. Chowdhury, M. S. Islam, S. Sen, M. I. Islam, S. Asaduzzaman, A. N. Bahar, and M. B. A. Miah, "Dataset on photonic crystal fiber based chemical sensor," Data Br., Vol. 12, 227-233, 2017.
doi:10.1016/j.dib.2017.03.048        Google Scholar

21. Akowuah, E. K., T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, "Numerical analysis of a photonic crystal fiber for biosensing applications," IEEE J. Quantum Electron., Vol. 48, No. 11, 1403-1410, 2012.
doi:10.1109/JQE.2012.2213803        Google Scholar

22. Podder, E., R. H. Jibon, M. B. Hossain, A. Al-Mamun Bulbul, S. Biswas, and M. A. Kabir, "Alcohol sensing through photonic crystal fiber at different temperature," Opt. Photonics J., Vol. 08, No. 10, 309-316, 2018.
doi:10.4236/opj.2018.810026        Google Scholar

23. Maidi, A. M., I. Yakasai, P. E. Abas, M. M. Nauman, R. A. Apong, S. Kaijage, and F. Begum, "Design and simulation of photonic crystal fiber for liquid sensing," Photonics, Vol. 8, No. 1, 1-14, 2021.
doi:10.3390/photonics8010016        Google Scholar

24. Yakasai, I., P. E. Abas, S. F. Kaijage, W. Caesarendra, and F. Begum, "Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids," Photonics, Vol. 6, No. 3, 2019.
doi:10.3390/photonics6030078        Google Scholar

25. Islam, S., B. Kumar, and K. Ahmed, "Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis," Alexandria Eng. J., Vol. 57, No. 3, 1459-1466, 2018.
doi:10.1016/j.aej.2017.03.015        Google Scholar

26. Maidi, A. M., N. Shamsuddin, W. R. Wong, S. Kaijage, and F. Begum, "Characteristics of ultrasensitive hexagonal-cored photonic crystal fiber for hazardous chemical sensing," Photonics, Vol. 9, No. 1, 2022.
doi:10.3390/photonics9010038        Google Scholar

27. Bai, X., H. Chen, and H. Yang, "Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission," Optik (Stuttg)., Vol. 158, 1266-1274, 2018.
doi:10.1016/j.ijleo.2018.01.015        Google Scholar

28. Maji, P. S. and P. Roy Chaudhuri, "Circular photonic crystal fibers: Numerical analysis of chromatic dispersion and losses," ISRN Opt., Vol. 2013, 1-9, 2013.
doi:10.1155/2013/986924        Google Scholar

29. Jia, C., H. Jia, N.Wang, J. Chai, X. Xu, Y. Lei, G. Liu, Y. Peng, and J. Xie, "Theoretical analysis of a 750-nm bandwidth hollow-core ring photonic crystal fiber with a graded structure for transporting 38 orbital angular momentum modes," IEEE Access, Vol. 6, 20291-20297, 2018.
doi:10.1109/ACCESS.2018.2817577        Google Scholar

30. Yakasai, I. K., P. E. Abas, S. Ali, and F. Begum, "Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation," Opt. Quantum Electron., Vol. 51, No. 4, 2019.
doi:10.1007/s11082-019-1832-x        Google Scholar

31. Kaijage, S. F., Z. Ouyang, and X. Jin, "Porous-core photonic crystal fiber for low loss terahertz wave guiding," IEEE Photonics Technol. Lett., Vol. 25, No. 15, 1454-1457, 2013.
doi:10.1109/LPT.2013.2266412        Google Scholar

32. Begum, F. and P. E. Abas, "Near infrared supercontinuum generation in silica based photonic crystal fiber," Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019.
doi:10.2528/PIERC18100102        Google Scholar

33. Begum, F., Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, "Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses," Opt. Rev., Vol. 16, No. 2, 54-58, 2009.
doi:10.1007/s10043-009-0011-x        Google Scholar

34. Kabir, M. A., M. M. Hassan, M. N. Hossain, B. K. Paul, and K. Ahmed, "Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission," Opt. Commun., Vol. 467, 125731, 2020.
doi:10.1016/j.optcom.2020.125731        Google Scholar

35. Hossain, M., E. Podder, A. Adhikary, and A. Al-Mamun, "Optimized hexagonal photonic crystal fibre sensor for glucose sensing," Adv. Res., Vol. 13, No. 3, 1-7, 2018.
doi:10.9734/AIR/2018/38972        Google Scholar

36. Kumar, P., K. F. Fiaboe, and J. S. Roy, "Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation," ETRI J., Vol. 42, No. 2, 282-291, 2020.
doi:10.4218/etrij.2019-0024        Google Scholar