1. Rashed, A. N. Z., M. S. F. Tabbour, and P. Vijayakumari, "Numerical analysis of optical properties using octagonal shaped photonic crystal fiber," J. Opt. Commun., 2019. Google Scholar
2. Mahfuz, M. Al., M. A. Mollah, M. R. Momota, A. K. Paul, A. Masud, S. Akter, and M. R. Hasan, "Highly sensitive photonic crystal fiber plasmonic biosensor: Design and analysis," Opt. Mater. (Amst)., Vol. 90, 315-321, 2019.
doi:10.1016/j.optmat.2019.02.012 Google Scholar
3. Rifat, A. A., M. R. Hasan, R. Ahmed, and H. Butt, "Photonic crystal fiber-based plasmonic biosensor with external sensing approach," J. Nanophotonics, Vol. 12, No. 1, 012503, 2017.
doi:10.1117/1.JNP.12.012503 Google Scholar
4. Islam, M. S., J. Sultana, M. Faisal, M. R. Islam, A. Dinovitser, B. W.-H. Ng, and D. Abbott, "A modified hexagonal photonic crystal fiber for terahertz applications," Opt. Mater. (Amst)., Vol. 79, 336-339, 2018.
doi:10.1016/j.optmat.2018.03.054 Google Scholar
5. Ahmed, K., M. Morshed, S. Asaduzzaman, and M. F. H. Arif, "Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber," Optik (Stuttg)., Vol. 131, 687-696, 2017.
doi:10.1016/j.ijleo.2016.11.171 Google Scholar
6. Cordeiro, C. M. B., A. K. L. Ng, and H. Ebendorff-Heidepriem, "Ultra-simplified single-step fabrication of microstructured optical fiber," Sci. Rep., Vol. 10, No. 1, 9678, 2020.
doi:10.1038/s41598-020-66632-3 Google Scholar
7. Dhanu Krishna, G., G. Prasannan, S. K. Sudheer, and V. P. Mahadevan Pillai, "Analysis of zero dispersion shift and supercontinuum generation at near IR in circular photonic crystal fibers," Optik (Stuttg)., Vol. 145, 599-607, 2017.
doi:10.1016/j.ijleo.2017.08.010 Google Scholar
8. Zhang, H., X. Zhang, H. Li, Y. Deng, X. Zhang, L. Xi, X. Tang, and W. Zhang, "A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission," Opt. Commun., Vol. 397, 59-66, 2017.
doi:10.1016/j.optcom.2017.03.075 Google Scholar
9. Ahmed, K., B. K. Paul, B. Vasudevan, A. N. Z. Rashed, R. Maheswar, I. S. Amiri, and P. Yupapin, "Design of D-shaped elliptical core photonic crystal fiber for blood plasma cell sensing application," Results Phys., Vol. 12, 2021-2025, 2019.
doi:10.1016/j.rinp.2019.02.026 Google Scholar
10. Medjouri, A., L. M. Simohamed, O. Ziane, and A. Boudrioua, "Investigation of high birefringence and chromatic dispersion management in photonic crystal fibre with square air holes," Optik (Stuttg)., Vol. 126, No. 20, 2269-2274, 2015.
doi:10.1016/j.ijleo.2015.05.119 Google Scholar
11. Hassan, M. M., M. A. Kabir, M. N. Hossain, T. K. Nguyen, B. K. Paul, K. Ahmed, and V. Dhasarathan, "Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission," Appl. Phys. B, Vol. 126, No. 9, 145, 2020.
doi:10.1007/s00340-020-07497-2 Google Scholar
12. Sultana, J., M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, "Highly birefringent elliptical core photonic crystal fiber for terahertz application," Opt. Commun., Vol. 407, 92-96, 2018.
doi:10.1016/j.optcom.2017.09.020 Google Scholar
13. Jibon, R. H., M. Ahmed, M. E. Rahaman, M. K. Hasan, M. M. Shaikh, and A. Tooshil, "Nicotine sensing by photonic crystal fiber in THz regime," 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), 334-337, IEEE, 2021.
doi:10.1109/ICREST51555.2021.9331009 Google Scholar
14. Vishwakarma, R., P. Kumar, S. Saha, G. Rout, and J. S. Roy, "Zero dispersion photonic crystal fibers for nonlinear applications," 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-4, IEEE, 2017. Google Scholar
15. Kumar, P., Rohan, V. Kumar, and J. S. Roy, "Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss," Optik (Stuttg)., Vol. 144, 363-369, 2017.
doi:10.1016/j.ijleo.2017.06.131 Google Scholar
16. Asaduzzaman, S., M. F. H. Arif, K. Ahmed, and P. Dhar, "Highly sensitive simple structure circular photonic crystal fiber based chemical sensor," 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), 151-154, IEEE, 2015.
doi:10.1109/WIECON-ECE.2015.7443884 Google Scholar
17. Habib, M. A., M. S. Anower, A. AlGhamdi, O. S. Faragallah, M. M. A. Eid, and A. N. Z. Rashed, "Efficient way for detection of alcohols using hollow core photonic crystal fiber sensor," Opt. Rev., Vol. 28, No. 4, 383-392, 2021.
doi:10.1007/s10043-021-00672-6 Google Scholar
18. Ahmed, K., M. J. Haque, M. A. Jabin, B. K. Paul, I. S. Amiri, and P. Yupapin, "Tetra-core surface plasmon resonance based biosensor for alcohol sensing," Phys. B Condens. Matter, Vol. 570, 48-52, 2019.
doi:10.1016/j.physb.2019.05.047 Google Scholar
19. Paul, B. K., M. S. Islam, K. Ahmed, and S. Asaduzzaman, "Alcohol sensing over O+E+S+C+L+U transmission band based on porous cored octagonal photonic crystal fiber," Photonic Sensors, Vol. 7, No. 2, 123-130, 2017.
doi:10.1007/s13320-017-0376-6 Google Scholar
20. Ahmed, K., B. K. Paul, S. Chowdhury, M. S. Islam, S. Sen, M. I. Islam, S. Asaduzzaman, A. N. Bahar, and M. B. A. Miah, "Dataset on photonic crystal fiber based chemical sensor," Data Br., Vol. 12, 227-233, 2017.
doi:10.1016/j.dib.2017.03.048 Google Scholar
21. Akowuah, E. K., T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, "Numerical analysis of a photonic crystal fiber for biosensing applications," IEEE J. Quantum Electron., Vol. 48, No. 11, 1403-1410, 2012.
doi:10.1109/JQE.2012.2213803 Google Scholar
22. Podder, E., R. H. Jibon, M. B. Hossain, A. Al-Mamun Bulbul, S. Biswas, and M. A. Kabir, "Alcohol sensing through photonic crystal fiber at different temperature," Opt. Photonics J., Vol. 08, No. 10, 309-316, 2018.
doi:10.4236/opj.2018.810026 Google Scholar
23. Maidi, A. M., I. Yakasai, P. E. Abas, M. M. Nauman, R. A. Apong, S. Kaijage, and F. Begum, "Design and simulation of photonic crystal fiber for liquid sensing," Photonics, Vol. 8, No. 1, 1-14, 2021.
doi:10.3390/photonics8010016 Google Scholar
24. Yakasai, I., P. E. Abas, S. F. Kaijage, W. Caesarendra, and F. Begum, "Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids," Photonics, Vol. 6, No. 3, 2019.
doi:10.3390/photonics6030078 Google Scholar
25. Islam, S., B. Kumar, and K. Ahmed, "Liquid-infiltrated photonic crystal fiber for sensing purpose: Design and analysis," Alexandria Eng. J., Vol. 57, No. 3, 1459-1466, 2018.
doi:10.1016/j.aej.2017.03.015 Google Scholar
26. Maidi, A. M., N. Shamsuddin, W. R. Wong, S. Kaijage, and F. Begum, "Characteristics of ultrasensitive hexagonal-cored photonic crystal fiber for hazardous chemical sensing," Photonics, Vol. 9, No. 1, 2022.
doi:10.3390/photonics9010038 Google Scholar
27. Bai, X., H. Chen, and H. Yang, "Design of a circular photonic crystal fiber with square air-holes for orbital angular momentum modes transmission," Optik (Stuttg)., Vol. 158, 1266-1274, 2018.
doi:10.1016/j.ijleo.2018.01.015 Google Scholar
28. Maji, P. S. and P. Roy Chaudhuri, "Circular photonic crystal fibers: Numerical analysis of chromatic dispersion and losses," ISRN Opt., Vol. 2013, 1-9, 2013.
doi:10.1155/2013/986924 Google Scholar
29. Jia, C., H. Jia, N.Wang, J. Chai, X. Xu, Y. Lei, G. Liu, Y. Peng, and J. Xie, "Theoretical analysis of a 750-nm bandwidth hollow-core ring photonic crystal fiber with a graded structure for transporting 38 orbital angular momentum modes," IEEE Access, Vol. 6, 20291-20297, 2018.
doi:10.1109/ACCESS.2018.2817577 Google Scholar
30. Yakasai, I. K., P. E. Abas, S. Ali, and F. Begum, "Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation," Opt. Quantum Electron., Vol. 51, No. 4, 2019.
doi:10.1007/s11082-019-1832-x Google Scholar
31. Kaijage, S. F., Z. Ouyang, and X. Jin, "Porous-core photonic crystal fiber for low loss terahertz wave guiding," IEEE Photonics Technol. Lett., Vol. 25, No. 15, 1454-1457, 2013.
doi:10.1109/LPT.2013.2266412 Google Scholar
32. Begum, F. and P. E. Abas, "Near infrared supercontinuum generation in silica based photonic crystal fiber," Progress In Electromagnetics Research C, Vol. 89, 149-159, 2019.
doi:10.2528/PIERC18100102 Google Scholar
33. Begum, F., Y. Namihira, S. M. A. Razzak, S. F. Kaijage, N. H. Hai, K. Miyagi, H. Higa, and N. Zou, "Flattened chromatic dispersion in square photonic crystal fibers with low confinement losses," Opt. Rev., Vol. 16, No. 2, 54-58, 2009.
doi:10.1007/s10043-009-0011-x Google Scholar
34. Kabir, M. A., M. M. Hassan, M. N. Hossain, B. K. Paul, and K. Ahmed, "Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission," Opt. Commun., Vol. 467, 125731, 2020.
doi:10.1016/j.optcom.2020.125731 Google Scholar
35. Hossain, M., E. Podder, A. Adhikary, and A. Al-Mamun, "Optimized hexagonal photonic crystal fibre sensor for glucose sensing," Adv. Res., Vol. 13, No. 3, 1-7, 2018.
doi:10.9734/AIR/2018/38972 Google Scholar
36. Kumar, P., K. F. Fiaboe, and J. S. Roy, "Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation," ETRI J., Vol. 42, No. 2, 282-291, 2020.
doi:10.4218/etrij.2019-0024 Google Scholar