Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-08
3D Printed Extended Lens as a Button Antenna for off -Body Links at 60 GHz
By
Progress In Electromagnetics Research M, Vol. 113, 47-58, 2022
Abstract
This paper presents a 3D printed extended hemispherical lens antenna for Body Centric Communications in 60 GHz band. The prototype consists of a 3D printed lens made of Polylactic Acid with three planar broadside patch antenna elements used as a source for the lens. The direction of the main beam antenna is switched by changing the excitation of source elements. The measured overlapping impedance bandwidth of the fabricated antenna is from 57.27 GHz to 60 GHz with reflection coefficient better than -10 dB. The main beam direction switches in broadside direction with 3 dB angular coverage from -29.2° to +30° by changing the radiating elements at 60 GHz. The measured gain is 15.28 dBi at 60 GHz. The beam switching capabilities and high gain with broadside radiation characteristics make the proposed antenna a suitable candidate for off-body links at 60 GHz. The effect of placing the antenna structure over the body is also studied in this paper. The body to off-body link measurement is successfully demonstrated with extended lens over the body and an open-ended waveguide as an external node.
Citation
Shakti Singh Chauhan Mahesh Pandurang Abegaonkar Ananjan Basu Djuradj Budimir , "3D Printed Extended Lens as a Button Antenna for off -Body Links at 60 GHz ," Progress In Electromagnetics Research M, Vol. 113, 47-58, 2022.
doi:10.2528/PIERM22051401
http://www.jpier.org/PIERM/pier.php?paper=22051401
References

1. Chavez-Santiago, R., et al., "Propagation models for IEEE 802.15.6 standardization of implant communication in body area networks," IEEE Commun. Mag., Vol. 51, No. 8, 80-87, Aug. 2013.
doi:10.1109/MCOM.2013.6576343

2. Pellegrini, A., et al., "Antennas and propagation for body-centric wireless communications at millimeter-wave frequencies: A review [Wireless Corner]," IEEE Antennas Propag. Mag., Vol. 55, No. 4, 262-287, Aug. 2013.
doi:10.1109/MAP.2013.6645205

3. Park, C. and T. S. Rappaport, "Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee," IEEE Wirel. Commun., Vol. 14, No. 4, 70-78, Aug. 2007.
doi:10.1109/MWC.2007.4300986

4. Cotton, S. L., W. G. Scanlon, and P. S. Hall, "A simulated study of co-channel inter-BAN interference at 2.45 GHz and 60 GHz," The 3rd European Wireless Technology Conference, 61-64, 2010.

5. Wu, X. Y. and P. S. Hall, "Substrate integrated waveguide Yagi-Uda antenna," Electron. Lett., Vol. 46, No. 23, 1541-1542, Nov. 2010.
doi:10.1049/el.2010.2558

6. Wu, X. Y., Y. Nechayev, and P. S. Hall, "Antenna design and channel measurements for on-body communications at 60 GHz," 2011 XXX URSI General Assembly and Scientific Symposium, 1-4, 2011, doi: 10.1109/URSIGASS.2011.6123717.

7. Wu, X. Y., L. Akhoondzadeh-Asl, and P. S. Hall, "Printed Yagi-Uda array for on-body communication channels at 60 GHz," Microw. Opt. Technol. Lett., Vol. 53, No. 12, 2728-2730, 2011.
doi:10.1002/mop.26443

8. Chahat, N., M. Zhadobov, L. L. Coq, and R. Sauleau, "Wearable endfire textile antenna for on-body communications at 60 GHz," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 799-802, 2012.
doi:10.1109/LAWP.2012.2207698

9. Recioui, A., "Application of a hybrid taguchi-genetic algorithm to the multiobjective design optimization of Yagi-Uda antennas," Wireless Pers. Commun., Vol. 71, No. 2, 1403-1420, Jul. 2013, doi: 10.1007/s11277-012-0882-1.
doi:10.1007/s11277-012-0882-1

10. Recioui, A. and Y. Grainat, "3D antenna array design using firefly optimization algorithm," Algerian Journal of Signals and Systems, Vol. 4, No. 2, 61-70, Dec. 2019.
doi:10.51485/ajss.v4i2.83

11. Puskely, J., M. Pokorny, J. Lacik, and Z. Raida, "Wearable disc-like antenna for body-centric communications at 61 GHz," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1490-1493, 2015.
doi:10.1109/LAWP.2014.2367812

12. Razafimahatratra, S., et al., "On-body propagation characterization with an H-plane Substrate Integrated Waveguide (SIW) horn antenna at 60 GHz," 2015 European Microwave Conference (EuMC), 211-214, 2015.
doi:10.1109/EuMC.2015.7345737

13. Brizzi, A., A. Pellegrini, L. Zhang, and Y. Hao, "Woodpile EBG-based antennas for body area networks at 60 GHz," 2012 4th International High Speed Intelligent Communication Forum, 1-4, 2012.

14. Chahat, N., M. Zhadobov, L. L. Coq, S. I. Alekseev, and R. Sauleau, "Characterization of the interactions between a 60-GHz antenna and the human body in an off-body scenario," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5958-5965, Dec. 2012.
doi:10.1109/TAP.2012.2211326

15. Chahat, N., M. Zhadobov, and R. Sauleau, "Wearable textile patch antenna for BAN At 60 GHz," 2013 7th European Conference on Antennas and Propagation (EuCAP), 217-219, 2013.

16. Ur-Rehman, M., N. A. Malik, X. Yang, Q. H. Abbasi, Z. Zhang, and N. Zhao, "A low profile antenna for millimeter-wave body-centric applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6329-6337, Dec. 2017.
doi:10.1109/TAP.2017.2700897

17. Bisognin, A., et al., "3D printed plastic 60 GHz lens: Enabling innovative millimeter wave antenna solution and system," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-4, 2014.

18. Costa, J. R., E. B. Lima, and C. A. Fernandes, "Compact beam-steerable lens antenna for 60-GHz wireless communications," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2926-2933, Oct. 2009.
doi:10.1109/TAP.2009.2029288

19. Artemenko, A., A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "Beam steerable quartz integrated lens antenna for 60 GHz frequency band," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 758-762, 2011.

20. Saleem, M. K., M. A. S. Alkanhal, A. F. Sheta, M. Abdel-Rahman, and M. Himdi, "Integrated lens antenna array with full azimuth plane beam scanning capability at 60 GHz," Microw. Opt. Technol. Lett., Vol. 59, No. 1, 116-120, Jan. 2017.
doi:10.1002/mop.30239

21. Karttunen, A., J. Ala-Laurinaho, R. Sauleau, and A. V. Räisänen, "A study of extended hemispherical lenses for a high-gain beam-steering antenna," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, 2010.

22. Filipovic, D. F., G. P. Gauthier, S. Raman, and G. M. Rebeiz, "Off-axis properties of silicon and quartz dielectric lens antennas," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 760-766, May 1997.
doi:10.1109/8.575618

23. Osman, M. A. R., M. K. A. Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.
doi:10.2528/PIER11041208

24. Soh, P. J., S. J. Boyes, G. Vandenbosch, Y. Huang, and S. L. Ooi, "On-body characterization of dual-band all-textile PIFA," Progress In Electromagnetics Research, Vol. 129, 517-539, 2012.
doi:10.2528/PIER12052408

25. Jais, M. I., M. F. B. Jamlos, M. Jusoh, T. Sabapathy, M. R. Kamarudin, R. B. Ahmad, A. A. Al-Hadi, E. I. B. Azmi, P. J. Soh, G. Vandenbosch, and N. L. Ishak, "A novel 2.45 GHz switchable beam textile antenna (Sbta) for outdoor wireless body area network (WBAN) applications," Progress In Electromagnetics Research, Vol. 138, 613-627, 2013.
doi:10.2528/PIER13022610

26. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for Millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, Apr. 2005.
doi:10.1109/TAP.2005.844420

27. Filipovic, D. F., S. S. Gearhart, and G. M. Rebeiz, "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 10, 1738-1749, Oct. 1993.
doi:10.1109/22.247919

28. Felício, J. M., C. A. Fernandes, and J. R. Costa, "Complex permittivity and anisotropy measurement of 3D-printed PLA at microwaves and millimeter-waves," 2016 22nd International Conference on Applied Electromagnetics and Communications (ICECOM), 1-6, 2016.