Vol. 121
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-06-22
A Leading Angle Flux Weakening Control Method for PMSM Based on Active Disturbance Rejection Control
By
Progress In Electromagnetics Research C, Vol. 121, 29-38, 2022
Abstract
A flux weakening (FW) control method of leading angle for a permanent magnet synchronous motor (PMSM) based on active disturbance rejection control (ADRC) is proposed to solve the problem of large fluctuation of speed, current, and torque in the control process. Firstly, according to the mathematical model of PMSM and its voltage and current constraints, the leading angle FW control algorithm is introduced. Then, according to the ADRC theory and the mathematical model of PMSM, the speed loop ADRC and current loop ADRC are constructed. The controller parameters are combined with the control bandwidth, and the parameter variation ranges are obtained by analyzing the stability of the control system. Finally, the proposed ADRC methods are combined with the leading angle FW control method to realize the ADRC leading angle FW control for PMSM, and the proposed method is verified on the experimental platform. The experimental results show that the proposed method has less speed, current, and torque fluctuations than the proportional integral (PI) controller method, which can effectively improve the motor control performance. At the same time, the controller parameters are combined with the bandwidth, which is convenient for practical engineering application.
Citation
Yanfei Pan, Xin Liu, Yilin Zhu, and Zhongshu Li, "A Leading Angle Flux Weakening Control Method for PMSM Based on Active Disturbance Rejection Control," Progress In Electromagnetics Research C, Vol. 121, 29-38, 2022.
doi:10.2528/PIERC22051608
References

1. Liu, X., Y. Pan, Y. Zhu, H. Han, and L. Ji, "Decoupling control of permanent magnet synchronous motor based on parameter identification of fuzzy least square method," Progress In Electromagnetics Research M, Vol. 103, 49-60, 2021.
doi:10.2528/PIERM21032601

2. Zhu, Y., Y. Bai, H. Wang, and L. Sun, "Sensorless control of permanent magnet synchronous motor based on T-S fuzzy inference algorithm fractional order sliding mode," Progress In Electromagnetics Research M, Vol. 105, 161-172, 2021.
doi:10.2528/PIERM21072503

3. Miguel-Espinar, C., D. Heredero-Peris, G. Gross, M. Llonch-Masachs, and D. Montesinos-Miracle, "Maximum torque per voltage flux-weakening strategy with speed limiter for PMSM drives," IEEE Transactions on Industrial Electronics, Vol. 68, No. 10, 9254-9264, Oct. 2021.
doi:10.1109/TIE.2020.3020029

4. Zhang, Z., C. Wang, M. Zhou, and X. You, "Flux-weakening in PMSM drives: Analysis of voltage angle control and the single current controller design," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 1, 437-445, Mar. 2019.
doi:10.1109/JESTPE.2018.2837668

5. Li, J., S. Ekanayake, M. F. Rahman, R. Dutta, X. Huang, J. Ma, and Y. Fang, "Deep flux weakening control with six-step overmodulation for a segmented interior permanent magnet synchronous motor," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 1-6, Aug. 2017.

6. Liu, Q. and K. Hameyer, "A deep field weakening control for the PMSM applying a modified overmodulation strategy," 8th IET International Conference on Power Electronics, Machines and Drives (PEMD), 1-6, Apr. 2016.

7. Wang, H., T. Wang, X. Zhang, and L. Guo, "Voltage feedback based flux-weakening control of IPMSMS with fuzzy-pi controller," International Journal of Applied Electromagnetics and Mechanics62, Vol. 62, No. 1, 31-43, Jan. 2019.
doi:10.3233/JAE-190014

8. Ding, D., G. Wang, N. Zhao, G. Zhang, and D. Xu, "Enhanced flux-weakening control method for reduced DC-link capacitance ipmsm drives," IEEE Transactions on Power Electronics,, Vol. 34, No. 8, 7788-7799, Aug. 2019.
doi:10.1109/TPEL.2018.2878877

9. Deng, T., Z. Su, J. Li, P. Tang, X. Chen, and P. Liu, "Advanced angle field weakening control strategy of permanent magnet synchronous motor," IEEE Transactions on Vehicular Technology, Vol. 68, No. 4, 3424-3435, Apr. 2019.
doi:10.1109/TVT.2019.2901275

10. Zhou, K., M. Ai, D. Sun, N. Jin, and X. Wu, "Field weakening operation control strategies of PMSM based on feedback linearization," Energies, Vol. 12, No. 23, 4526, Nov. 2019.
doi:10.3390/en12234526

11. Trancho, E., E. Ibarra, A. Arias, I. Kortabarria, J. Jurgens, L. Marengo, A. Fricassè, and J. V. Gragger, "PM-assisted synchronous reluctance machine flux weakening control for EV and HEV applications," IEEE Transactions on Industrial Electronics, Vol. 65, No. 4, 2986-2995, Apr. 2018.
doi:10.1109/TIE.2017.2748047

12. Jin, X., Y. Zeng, and D. Xu, "Novel PMSM field-weakening control method," IECON, 3744-3748, Oct. 2017.

13. Ekanayake, S., R. Dutta, and M. F. Rahman, "A modified single-current-regulator control scheme for deep flux-weakening operation of interior permanent magnet synchronous motors," The Annual Conference of the IEEE Industrial Electronics Society, 2624-2629, 2016.

14. Zhang, X., Z. Zhao, and C. Xu, "A flux-weakening method for pmsm based model predictive direct speed control," 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2557-2561, Nov. 2020.

15. Liu, J., C. Gong, Z. Han, and H. Yu, "IPMSM model predictive control in flux-weakening operation using an improved algorithm," IEEE Transactions on Industrial Electronics, Vol. 65, No. 12, 9378-9387, Dec. 2018.
doi:10.1109/TIE.2018.2818640

16. Qu, L., W. Qiao, and L. Qu, "An enhanced linear active disturbance rejection rotor position sensorless control for permanent magnet synchronous motors," IEEE Transactions on Power Electronics, Vol. 35, No. 6, 6175-6184, Jun. 2020.
doi:10.1109/TPEL.2019.2953162

17. Zuo, Y., X. Zhu, L. Quan, C. Zhang, Y. Du, and Z. Xiang, "Active disturbance rejection controller for speed control of electrical drives using phase-locking loop observer," IEEE Transactions on Industrial Electronics, Vol. 66, No. 3, 1748-1759, Mar. 2019.
doi:10.1109/TIE.2018.2838067