1. Noh, M. and D. L. Trumper, "Homopolar bearingless slice motor with flux-biasing Halbach arrays," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7757-7766, 2020.
doi:10.1109/TIE.2019.2942512 Google Scholar
2. Sun, X. D., Z. J. Jin, Y. F. Cai, Z. B. Yang, and L. Chen, "Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine," IEEE Transactions on Power Electronics, Vol. 35, No. 12, 13631-13640, 2020.
doi:10.1109/TPEL.2020.2994254 Google Scholar
3. Liu, G., Z. Ma, H. Zhu, J. Sun, and J. Huan, "Multi-objective optimization and analysis of six-pole outer rotor hybrid magnetic bearing," Progress In Electromagnetics Research C, Vol. 119, 97-114, 2022.
doi:10.2528/PIERC22010601 Google Scholar
4. Yang, Z. B., C. L. Lu, X. D. Sun, J. L. Ji, and Q. F. Ding, "Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization-genetic algorithm," IEEE Transactions on Transportation Electrification, Vol. 7, No. 2, 694-705, 2021.
doi:10.1109/TTE.2020.3031338 Google Scholar
5. Wang, H. J. and F. X. Li, "Design consideration and characteristic investigation of modular permanent magnet bearingless switched reluctance motor," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4326-4337, 2020.
doi:10.1109/TIE.2019.2931218 Google Scholar
6. Yang, Z. B., Q. F. Ding, X. D. Sun, and C. L. Lu, "Design and analysis of a three-speed wound bearingless induction motor," IEEE Transactions on Industrial Electronics, 2021, doi: 10.1109/TIE.2021.3128900. Google Scholar
7. Jin, Z. J., X. D. Sun, and Z. B. Yang, "A novel four degree-of-freedoms bearingless permanent magnet machine using modified cross feedback control scheme for flywheel energy storage systems," International Journal of Applied Electromagnetics and Mechanics, Vol. 60, No. 3, 379-392, 2019.
doi:10.3233/JAE-180115 Google Scholar
8. Bu, W. S., F. Zhang, F. Z. He, L. G. Sun, and Y. K. Qiao, "Neural network inverse system decoupling fuzzy self-tuning proportional-derivative control strategy of a bearingless induction motor," Proceedings of The Institution of Mechanical Engineers. Part I --- Journal of Systems and Control Engineering, Vol. 235, No. 7, 1113-1124, 2021. Google Scholar
9. Xu, T., Z. Yang, X. Sun, and J. Jia, "Electromagnetic property analysis of a bearingless induction motor using amorphous alloy material," Progress In Electromagnetics Research M, Vol. 104, 49-59, 2021.
doi:10.2528/PIERM21062601 Google Scholar
10. Sinervo, A. and A. Arkkio, "Rotor radial position control and its effect on the total efficiency of a bearingless induction motor with a cage rotor," IEEE Transactions on Magnetics, Vol. 50, No. 4, 1-9, 2014.
doi:10.1109/TMAG.2013.2291224 Google Scholar
11. Yang, Z. B., Q. F. Ding, X. D. Sun, H. M. Zhu, and C. L. Lu, "Fractional-order sliding mode control for a bearingless induction motor based on improved load torque observer," Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol. 358, No. 7, 3701-3725, 2021.
doi:10.1016/j.jfranklin.2021.03.006 Google Scholar
12. Yao, H., Y. Yan, T. N. Shi, G. Z. Zhang, Z. Q. Wang, and C. L. Xia, "A novel SVPWM scheme for field-oriented vector-controlled PMSM drive system fed by cascaded H-bridge inverter," IEEE Transactions on Power Electronics, Vol. 36, No. 5, 8988-9000, 2021.
doi:10.1109/TPEL.2021.3054642 Google Scholar
13. Sun, X. D., B. K. Su, L. Chen, and Z. B. Yang, "Precise control of a four degree-of-freedom permanent magnet biased active magnetic bearing system in a magnetically suspended direct- driven spindle using neural network inverse scheme," Mechanical Systems and Signal Processing, Vol. 88, 36-48, 2017.
doi:10.1016/j.ymssp.2016.11.022 Google Scholar
14. Khoury, G., R. Ghosn, F. Khatounian, M. Fadel, and M. Tientcheu, "Energy-efficient field-oriented control for induction motors taking core losses into account," Electrical Engineering, 2021, doi: 10.1007/s00202-021-01321-6. Google Scholar
15. Zhang, X., B. Wang, Y. Yu, J. Zhang, J. X. Dong, and D. G. Xu, "Analysis and optimization of current dynamic control in induction motor field-weakening region," IEEE Transactions on Power Electronics, Vol. 35, No. 9, 8860-8866, 2020.
doi:10.1109/TPEL.2020.2968978 Google Scholar
16. Zhang, W. W., F. Xiao, J. L. Liu, Z. Q. Mai, and C. R. Li, "Optimization of maximum torque output in the wide speed range of a PMSM traction control system," Journal of Power Electronics, Vol. 20, No. 1, 152-162, 2020.
doi:10.1007/s43236-019-00008-3 Google Scholar
17. Feng, G. D., C. Y. Lai, Y. Han, and N. C. Kar, "Fast maximum torque per ampere (MTPA) angle detection for interior PMSMs using online polynomial curve fitting," IEEE Transactions on Power Electronics, Vol. 37, No. 2, 2045-2056, 2022. Google Scholar
18. Xie, F., C. M. Qiu, and Z. Qian, "Optimal speed-torque control of asynchronous motor for electric cars in the field-weakening region based on voltage vector optimization," IEEE Transactions on Power Electronics, Vol. 37, No. 1, 830-842, 2022.
doi:10.1109/TPEL.2021.3097906 Google Scholar
19. Gashtil, H., V. Pickert, D. J. Atkinson, M. Dahidah, and D. Giaouris, "Improved voltage boundary with model-based control algorithm for increased torque in the field weakening region of induction machines," IEEE Transactions on Transportation Electrification, Vol. 7, No. 3, 1600-1614, 2021.
doi:10.1109/TTE.2020.3048306 Google Scholar
20. Wang, B., J. Zhang, Y. Yu, X. Zhang, and D. G. Xu, "Unified complex vector field-weakening control for induction motor high-speed drives," IEEE Transactions on Power Electronics, Vol. 36, No. 6, 7000-7011, 2021.
doi:10.1109/TPEL.2020.3034246 Google Scholar
21. Zhang, X. A., G. H. B. Foo, and M. F. Rahman, "A Robust field-weakening approach for direct torque and flux controlled reluctance synchronous motors with extended constant power speed region," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1813-1823, 2020.
doi:10.1109/TIE.2019.2903760 Google Scholar
22. Yu, Z. Y., C. Gan, K. Ni, R. H. Qu, and W. B. Kong, "Dual three-phase flux-modulated switched reluctance motor drive with maximum torque per ampere strategy," IEEE Transactions on Industry Applications, Vol. 57, No. 6, 5806-5817, 2021.
doi:10.1109/TIA.2021.3102885 Google Scholar
23. Levi, E. and M. Y. Wang, "A speed estimator for high performance sensorless control of induction motors in the field weakening region," IEEE Transactions on Power Electronics, Vol. 17, No. 3, 365-378, 2002.
doi:10.1109/TPEL.2002.1004244 Google Scholar
24. Jo, G. J. and J. W. Choi, "Robust voltage model flux estimator design with parallel vector compensator for sensorless drive of induction motors," Journal of Power Electronics, Vol. 21, No. 1, 126-141, 2021.
doi:10.1007/s43236-020-00149-w Google Scholar
25. Wang, Z. Y., W. Sun, and D. Jiang, "Stability analysis and trajectory design of a nonlinear switching system for speed sensorless induction motor drive," IEEE Transactions on Industrial Electronics, Vol. 69, No. 6, 5514-5524, 2022.
doi:10.1109/TIE.2021.3086712 Google Scholar
26. Sun, X. D., L. Chen, and H. B. Jiang, "High-performance control for a bearingless permanent- magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3479-3488, 2016.
doi:10.1109/TIE.2016.2530040 Google Scholar
27. Wang, C., A. Jaidaa, Z. Wang, and L. Lu, "An effective decoupling control with simple structure for induction motor drive system considering digital delay," Electronics, 2021, doi: 10.3390/electronics10233048. Google Scholar
28. Han, Y. F., X. Q. Wu, G. F. He, Y. H. Hu, and K. Ni, "Nonlinear magnetic field vector control with dynamic-variant parameters for high-power electrically excited synchronous motor," IEEE Transactions on Power Electronics, Vol. 35, No. 10, 11053-11063, 2020.
doi:10.1109/TPEL.2020.2977390 Google Scholar
29. Ye, X. T., Z. B. Yang, and T. Zhang, "Modelling and performance analysis on a bearingless fixed-pole rotor induction motor," IET Electric Power Applications, Vol. 13, No. 2, 251-258, 2019.
doi:10.1049/iet-epa.2018.5296 Google Scholar
30. Martinez, J., A. Belahcen, and J. G. Detoni, "A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors," Mechanical Systems and Signal Processing, Vol. 66-67, 640-656, 2016.
doi:10.1016/j.ymssp.2015.06.014 Google Scholar
31. Markovic, N., S. Bjelic, F. Markovic, M. Markovic, and S. Jovic, "Theoretical method for determination of the impact of parasitic torques from the equivalent scheme of induction machines fed by PWM inverter," Measurement, 2021, doi: 10.1016/j.measurement.2020.108344. Google Scholar
32. Sun, X. D., L. Chen, and Z. B. Yang, "Overview of bearingless permanent-magnet synchronous motors," IEEE Transactions on Industrial Electronics, Vol. 60, No. 12, 5528-5538, 2013.
doi:10.1109/TIE.2012.2232253 Google Scholar