1. Glenn, E., T. L. Glenn, and M. L. Neurauter, Pediatric Vehicular Heatstroke: Review of Literature and Preventative Technologies, 2019.
2. Ahmad, M. B., A. A. Abdullahi, A. S. Muhammad, Y. B. Saleh, and U. B. Usman, "The various types of sensors used in the security alarm system," International Journal of New Computer Architectures and their Applications (IJNCAA), Vol. 9, No. 2, 50-59, 2019. Google Scholar
3. Razuin, R., M. N. Julina, F. S. Nurquin, and A. H. Amirul, "Heatstroke due to vehicular entrapment: An autopsy case report," Indian Journal of Forensic Medicine & Toxicology, Vol. 14, No. 3, 2020. Google Scholar
4. Hammett, D. L., T. M. Kennedy, S. M. Selbst, A. Rollins, and J. E. Fennell, "Pediatric heatstroke fatalities caused by being left in motor vehicles," Pediatric Emergency Care, Vol. 37, No. 12, e1560-e1565, 2021.
doi:10.1097/PEC.0000000000002115 Google Scholar
5. Juan, C. G., E. Bronchalo, B. Potelon, C. Quendo, and J. M. Sabater-Navarro, "Glucose concentration measurement in human blood plasma solutions with microwave sensors," Sensors, Vol. 19, No. 17, 3779, 2019.
doi:10.3390/s19173779 Google Scholar
6. Muñoz-Enano, J., P. Vélez, M. Gil, and F. Martín, "Planar microwave resonant sensors: A review and recent developments," Applied Sciences, Vol. 10, No. 7, 2615, 2020.
doi:10.3390/app10072615 Google Scholar
7. Naktong, W., S. Phonsri, W. Srison, S. Prapakarn, N. Prapakarn, and A. Ruengwaree, "I-shape monopole antenna for applying to check kids trapped inside car," Engineering, Science, Technology and Architecture Conference, (ESTACON 12), 307-312, Thailand, 2021. Google Scholar
8. Kwon, J., H. Park, C. Lee, G. Namgung, Y. Seo, and S. Kahng, "Small EBG decoupling structure for high isolation between two RFID tags," 2019 8th Asia-Pacific Conference on Antennas and Propagation (APCAP), 331-336, IEEE, August 2019.
doi:10.1109/APCAP47827.2019.9472055 Google Scholar
9. Kedze, K. E., H. Wang, S. X. Ta, and I. Park, "Wideband low-profile printed dipole antenna incorporated with folded strips and corner-cut parasitic patches above the ground plane," IEEE Access, Vol. 7, 15537-15546, 2019.
doi:10.1109/ACCESS.2019.2894812 Google Scholar
10. El Ayachi, M., M. Rahmoun, P. Brachat, and J. M. Ribero, "Realization of planar antenna with wide bandwidth and high gain using novel EBG structure," 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), 1-6, IEEE, April 2019. Google Scholar
11. He, R., Z. H. Yan, and Y. B. Meng, "A low-profile dual-polarized crossed dipole antenna on AMC surface," The Applied Computational Electromagnetics Society Journal (ACES), 1038-1042, 2019. Google Scholar
12. Chen, P., L. Wang, and T. Ding, "A broadbiand dual-polarized antenna with CRR-EBG structure for 5G applications," The Applied Computational Electromagnetics Society Journal (ACES), 1507-1512, 2020. Google Scholar
13. Subramanian, S., P. M. Parameswari, and B. Sundarambal, "Design and development of rf energy harvesting loop antenna," 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 994-997, IEEE, March 2020.
doi:10.1109/ICACCS48705.2020.9074402 Google Scholar
14. Malhat, H. A. E. A., A. M. Mabrouk, H. El-Hmaily, H. F. Hamed, S. H. Zainud-Deen, and A. A. E. M. Ibrahim, "Electronic beam switching using graphene artificial magnetic conductor surfaces," Optical and Quantum Electronics, Vol. 52, No. 7, 1-15, 2020.
doi:10.1007/s11082-020-02475-6 Google Scholar
15. Tamrakar, M. and U. K. Kommuri, "EBG-AMC-HIS characteristics analysis of QBTR unitcell," Sādhanā, Vol. 46, No. 1, 1-6, 2021.
doi:10.1007/s12046-020-01526-8 Google Scholar
16. Kwon, O. H., W. B. Park, J. Yun, H. J. Lim, and K. C. Hwang, "A low-profile HF meandered dipole antenna with a ferrite-loaded artificial magnetic conductor," Applied Sciences, Vol. 11, No. 5, 2237, 2021.
doi:10.3390/app11052237 Google Scholar
17. Liu, Z. G., R. J. Yin, Z. N. Ying, W. B. Lu, and K. C. Tseng, "Dual-band and shared-aperture Fabry-Perot cavity antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1686-1690, 2021.
doi:10.1109/LAWP.2021.3093575 Google Scholar
18. Malekpoor, H. and M. Hamidkhani, "Performance enhancement of low-profile wideband multi-element MIMO arrays backed by AMC surface for vehicular wireless communications," IEEE Access, Vol. 9, 166206-166222, 2021.
doi:10.1109/ACCESS.2021.3135447 Google Scholar
19. Malekpoor, H. and A. Abolmasoumi, "Gain and isolation improvement of compact MIMO printed dipole arrays realized by second iteration Giuseppe Peano AMC for 4G/5G wireless networks," Wireless Networks, 1-14, 2022. Google Scholar
20. Jiang, C., S. Wang, T. Wei, Q. Yang, J. Li, and E. Chen, "Dual-band circularly polarized crossed-dipole antenna backed by a double layer artificial magnetic conductor," 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), 217-220, IEEE, November 2020. Google Scholar
21. Jiang, Z., Z. Wang, L. Y. Nie, X. Zhao, and S. Huang, "A low-profile ultra-wideband slotted dipole antenna based on artificial magnetic conductor," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 6710-675, 2022.
doi:10.1109/LAWP.2022.3140802 Google Scholar
22. Xiong, H. Q., C. J. Zhang, and M. S. Tong, "Wideband low-profile dual-polarized antenna based on a gain enhanced EBG reflector," IEEE Transactions on Components, Packaging and Manufacturing Technology, 391-394, 2021. Google Scholar
23. Ashyap, A. Y., Z. Z. Abidin, S. H. Dahlan, H. A. Majid, M. R. Kamarudin, A. Alomainy, and J. M. Noras, "Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications," IEEE Access, Vol. 6, 77529-77541, 2018.
doi:10.1109/ACCESS.2018.2883379 Google Scholar
24. Yalduz, H., B. Koç, L. Kuzu, and M. Turkmen, "An ultra-wide band low-SAR flexible metasurface-enabled antenna for WBAN applications," Applied Physics A, Vol. 125, No. 9, 1-11, 2019.
doi:10.1007/s00339-019-2902-4 Google Scholar
25. Amalraj, T. D. and R. Savarimuthu, "Design and analysis of microstrip patch antenna using periodic EBG structure for C-band applications," Wireless Personal Communications, Vol. 109, No. 3, 2077-2094, 2019.
doi:10.1007/s11277-019-06669-4 Google Scholar
26. Jun, S., B. Sanz-Izquierdo, and E. A. Parker, "A novel reconfigurable EBG structure and its potential use as liquid sensor," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, March 2019. Google Scholar
27. Bora, P., P. Pardhasaradhi, and B. T. P. Madhav, "Design and analysis of EBG antenna for Wi-Fi, LTE, and WLAN applications," The Applied Computational Electromagnetics Society Journal (ACES), 1030-1036, 2020.
doi:10.47037/2020.ACES.J.350908 Google Scholar
28. Zhang, K., G. A. Vandenbosch, and S. Yan, "A novel design approach for compact wearable antennas based on metasurfaces," IEEE Transactions on Biomedical Circuits and Systems, Vol. 14, No. 4, 918-927, 2020.
doi:10.1109/TBCAS.2020.3010259 Google Scholar
29. Dogan, G. T. and E. Tetik, "Metamaterial based flexible coplanar antenna design and simulation for human body applications," Journal of the Institute of Science and Technology, Vol. 10, No. 4, 2541-2550, 2020. Google Scholar
30. El May, W., I. Sfar, J. M. Ribero, and L. Osman, "Design of low-profile and safe low SAR tri-band textile EBG-based antenna for IoT applications," Progress In Electromagnetics Research Letters, Vol. 98, 85-94, 2021.
doi:10.2528/PIERL21051107 Google Scholar
31. Patil, S., A. Verma, A. K. Singh, B. K. Kanaujia, and S. Kumar, "A low-profile circularly polarized microstrip antenna using elliptical electromagnetic band gap structure," International Journal of Microwave and Wireless Technologies, 1-10, 2021.
doi:10.1017/S1759078721001367 Google Scholar
32. Ramanpreet, N., M. Rattan, and S. S. Gill, "Compact and low profile planar antenna with novel metastructure for wearable MBAN devices," Wireless Personal Communications, Vol. 118, No. 4, 3335-3347, 2021.
doi:10.1007/s11277-021-08182-z Google Scholar
33. Arif, A., M. R. Akram, K. Riaz, M. Zubair, and M. Q. Mehmood, "Koch fractal based wearable antenna backed with EBG plane," 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), 642-646, IEEE, January 2020.
doi:10.1109/IBCAST47879.2020.9044575 Google Scholar
34. Balanis, C. A., Antenna Theory and Design, John Willey & Sons, NY, USA, 1997.
35. Fhafhiem, N., P. Krachodnok, and R. Wongsan, "Curved strip dipole antenna on EBG reflector plane for RFID applications," WSEAS Transactions on Communications, Vol. 9, No. 6, 374-383, 2010. Google Scholar
36. Naktong, W., A. Ruengwaree, N. Fhafhiem, and P. Krachodnok, "Resonator rectenna design based on metamaterials for low-RF energy harvesting," CMC-Computers Materials & Continua, Vol. 68, No. 2, 1731-1750, 2021.
doi:10.32604/cmc.2021.015843 Google Scholar
37. Malekpoor, H. and M. Hamidkhani, "Performance enhancement of low-profile wideband multi-element MIMO arrays backed by AMC surface for vehicular wireless communications," IEEE Access, Vol. 9, 166206-166222, 2021.
doi:10.1109/ACCESS.2021.3135447 Google Scholar