1. Nkwari, P. K. M., S. Sinha, and H. C. Ferreira, "Through-the-wall radar imaging: A review," IETE Technical Review, Vol. 35, No. 6, 631-639, 2017.
doi:10.1080/02564602.2017.1364146 Google Scholar
2. Verma, P., A. Gaikwad, D. Singh, and M. Nigam, "Analysis of clutter reduction techniques for through wall imaging in UWB range," Progress In Electromagnetics Research B, Vol. 17, 29-48, 2009.
doi:10.2528/PIERB09060903 Google Scholar
3. Wu, Y., F. Shen, D. Xu, and R. Liu, "An ultra-wideband antenna with low dispersion for ground penetrating radar system," IEEE Sensors Journal, Vol. 21, No. 13, 15171-15179, 2021.
doi:10.1109/JSEN.2021.3068522 Google Scholar
4. Selvaraj, V., J. B. J. J. Sheela, R. Krishnan, L. Kandasamy, and S. Devarajulu, "Detection of depth of the tumor in microwave imaging using ground penetrating radar algorithm," Progress In Electromagnetics Research M, Vol. 96, 191-202, 2020.
doi:10.2528/PIERM20062201 Google Scholar
5. Song, Y., J. Hu, N. Chu, T. Jin, J. Zhang, and Z. Zhou, "Building layout reconstruction in concealed human target sensing via UWB MIMO through-wall imaging radar," IEEE Geoscience and Remote Sensing Letters, Vol. 15, No. 8, 1199-1203, 2018.
doi:10.1109/LGRS.2018.2834501 Google Scholar
6. Zadeh, A. T., M. Diyap, J. Moll, and V. Krozer, "Towards localization and classification of birds and bats in windparks using multiple FMCW-radars at Ka-band," Progress In Electromagnetics Research M, Vol. 109, 1-12, 2022.
doi:10.2528/PIERM21110502 Google Scholar
7. Gao, Z., Y. Jia, S. Liu, and X. Zhang, "Development of ground-based SFCW-ArcSAR system and investigation on point target response," Progress In Electromagnetics Research M, Vol. 109, 137-148, 2022.
doi:10.2528/PIERM21121702 Google Scholar
8. Mahfouz, M., A. Fathy, Y. Yang, E. E. Ali, and A. Badawi, "See-through-wall imaging using ultra wideband pulse systems," 34th Applied Imagery and Pattern Recognition Workshop (AIPR'05), Washington, DC, USA, 2005. Google Scholar
9. Wang, Y., Q. Liu, and A. E. Fathy, "CW and pulse-Doppler radar processing based on FPGA for human sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 5, 3097-3107, 2012. Google Scholar
10. Crowgey, B. R., E. J. Rothwell, L. C. Kempel, and E. L. Mokole, "Comparison of UWB short-pulse and stepped-frequency radar systems for imaging through barriers," Progress In Electromagnetics Research, Vol. 110, 403-419, 2010.
doi:10.2528/PIER10091306 Google Scholar
11. Yang, D., Z. Zhu, J. Zhang, and B. Liang, "The overview of human localization and vital sign signal measurement using handheld IR-UWB through-wall radar," Sensors, Vol. 21, No. 2, 402, 2021.
doi:10.3390/s21020402 Google Scholar
12. Sadoudi, S., M. S. Azzaz, M. Djeddou, and M. Benssalah, "An FPGA real-time implementation of the Chen's chaotic system for securing chaotic communications," International Journal of Nonlinear Science, Vol. 7, No. 4, 467-474, 2009. Google Scholar
13. Lee, Y. C., Y. K. Chan, and V. Koo, "Design and implementation of field-programmable gate array based fast Fourier transform co-processor using verilog hardware description language," Progress In Electromagnetics Research B, Vol. 92, 47-70, 2021.
doi:10.2528/PIERB20122806 Google Scholar
14. Sharma, R., O. Yurduseven, B. Deka, and V. Fusco, "Hardware enabled acceleration of near-field coded aperture radar physical model for millimetre-wave computational imaging," Progress In Electromagnetics Research B, Vol. 90, 91-108, 2021.
doi:10.2528/PIERB20112305 Google Scholar
15. Yang, Y. and A. E. Fathy, "Development and implementation of a real-time see-through-wall radar system based on FPGA," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1270-1280, 2009.
doi:10.1109/TGRS.2008.2010251 Google Scholar
16. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301 Google Scholar
17. Firmansyah, I. and Y. Yamaguchi, "FPGA-based implementation of a chirp signal generator using an OpenCL design," Microprocessors and Microsystems, Vol. 77, 103199, 2020.
doi:10.1016/j.micpro.2020.103199 Google Scholar
18. Park, Y. and D. D. Wentzloff, "All-digital synthesizable UWB transmitter architectures," IEEE International Conference on Ultra-Wideband, Vol. 2, 29-32, 2008. Google Scholar
19. Duraiswamy, P., X. Li, J. Bauwelinck, J. Vandewege, P. Vaes, and S. Teughels, "Synchronous delay based UWB pulse generator in FPGA," IEICE Electronics Express, Vol. 9, No. 9, 868-873, 2012.
doi:10.1587/elex.9.868 Google Scholar
20. Saad, M., A. Maali, M. S. Azzaz, and I. Kakouche, "An experimental platform of impulse UWB radar for through-wall imaging based on FPGAs," International Conference on Communications Control Systems and Signal Processing, 198-201, 2020. Google Scholar
21. Tantiparimongkol, L. and P. Phasukkit, "IR-UWB pulse generation using FPGA scheme for through obstacle human detection," Sensors, Vol. 20, No. 13, 3750, 2020.
doi:10.3390/s20133750 Google Scholar
22. Hu, B. and N. C. Beaulieu, "Pulse shapes for ultrawideband communication systems," IEEE Transactions on Wireless Communications, Vol. 4, No. 4, 1789-1797, 2005.
doi:10.1109/TWC.2005.850311 Google Scholar
23. Chen, X. and S. Kiaei, "Monocycle shapes for ultra wideband system," 2002 IEEE International Symposium on Circuits and Systems (ISCAS), Phoenix-Scottsdale, AZ, USA, 2002. Google Scholar
24. Skolnik, M. I., Radar Handbook, McGraw-Hill, New York, 1970.
25. Cui, G., L. Kong, and J. Yang, "A back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging," IEEE 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007, 123-126, 2007. Google Scholar
26. Soumekh, M., Synthetic Aperture Radar Signal Processing with Matlab Algorithms, Wiley, New York, NY, 1999.
27. Barrie, G., "Ultra-wideband synthetic aperture imaging: Data and image processing," Defence RD Canada-Ottawa, Ottawa, 2003. Google Scholar
28. Jin, T., B. Chen, and Z. Zhou, "Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 3, 1836-1843, 2012.
doi:10.1109/TGRS.2012.2206395 Google Scholar
29. Ahmad, F., Y. Zhang, and M. G. Amin, "Three-dimensional wideband beamforming for imaging through a single wall," IEEE Geoscience and Remote Sensing Letters, Vol. 5, 176-179, 2008.
doi:10.1109/LGRS.2008.915742 Google Scholar
30. X. Inc. 7 series FPGAs GTX/GTH transceivers user guide, Xilinx, 2015.
31. X. Inc. Kintex-7 FPGA KC705 Evaluation Kit, Xilinx, 2012.
32. Tahar, Z., X. Derobert, and M. Benslama, "An ultra-wideband modified vivaldi antenna applied to through the ground and wall imaging," Progress In Electromagnetics Research B, Vol. 86, 111-122, 2018.
doi:10.2528/PIERC18051502 Google Scholar
33. Wang, Y. and A. E. Fathy, "Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1986-2000, 2011.
doi:10.1109/TGRS.2011.2170694 Google Scholar
34. Dehmollaian, M., M. Thiel, and K. Sarabandi, "Through-the-wall imaging using differential SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 5, 1289-1296, 2009.
doi:10.1109/TGRS.2008.2010052 Google Scholar