Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-22
Terahertz Channel Measurements for Different Angles and Different Obstacles
By
Progress In Electromagnetics Research M, Vol. 113, 187-198, 2022
Abstract
With the development of communication technology, people's requirements for information transmission rate are getting higher and higher. Compared with the previous sub 6G frequency band, terahertz communication has a larger bandwidth and a higher rate. This paper studies the influence of azimuth angle of arrival (AoA) and azimuth angle of departure (AoD) on the received signal strength in the 220 GHz-320 GHz frequency band, as well as the influence of the signal passing through different obstacles, different dry humidity and material thickness on the signal power.
Citation
Junsong Jia Weimin Wang Yongle Wu Yuan'an Liu Yuqin Yang Hui Li Hua Xu , "Terahertz Channel Measurements for Different Angles and Different Obstacles," Progress In Electromagnetics Research M, Vol. 113, 187-198, 2022.
doi:10.2528/PIERM22060301
http://www.jpier.org/PIERM/pier.php?paper=22060301
References

1. Guan, K., H. Yi, D. He, B. Ai, and Z. Zhong, "Towards 6G: Paradigm of realistic terahertz channel modeling," China Communications, Vol. 18, No. 5, 1-18, May 2021.
doi:10.23919/JCC.2021.05.001

2. Fu, J., P. Juyal, and A. Zajić, "Modeling of 300 GHz chip-to-chip wireless channels in metal enclosures," IEEE Transactions on Wireless Communications, Vol. 19, No. 5, 3214-3227, May 2020.
doi:10.1109/TWC.2020.2971206

3. Cheng, C., S. Sangodoyin, and A. Zajić, "THz cluster-based modeling and propagation characterization in a data center environment," IEEE Access, Vol. 8, 56544-56558, 2020.
doi:10.1109/ACCESS.2020.2981293

4. Kim, S. and A. Zajić, "Statistical modeling and simulation of short-range device-to-device communication channels at sub-THz frequencies," IEEE Transactions on Wireless Communications, Vol. 15, No. 9, 6423-6433, Sept. 2016.
doi:10.1109/TWC.2016.2585103

5. Guan, K., et al., "Measurement, simulation, and characterization of train-to-infrastructure inside-station channel at the Terahertz band," IEEE Transactions on Terahertz Science and Technology, Vol. 9, No. 3, 291-306, May 2019.
doi:10.1109/TTHZ.2019.2909975

6. Mudonhi, A., R. D'Errico, and C. Oestges, "Indoor mmWave channel characterization with large virtual antenna arrays," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

7. Priebe, S., C. Jastrow, M. Jacob, T. Kleine-Ostmann, and T. Schrader T. Kürner, "Channel and propagation measurements at 300 GHz," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1688-1698, May 2011.
doi:10.1109/TAP.2011.2122294

8. Abbasi, N. A., A. Hariharan, A. M. Nair, and A. F. Molisch, "Channel measurements and path loss modeling for indoor THz communication," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-5, 2020.

9. Chen, Y., Y. Li, C. Han, Z. Yu, and G. Wang, "Channel measurement and ray-tracing-statistical hybrid modeling for low-terahertz indoor communications," IEEE Transactions on Wireless Communications, Vol. 20, No. 12, 8163-8176, Dec. 2021.
doi:10.1109/TWC.2021.3090781

10. Zantah, Y., F. Sheikh, A. A. Abbas, M. Alissa, and T. Kaiser, "Channel measurements in lecture room environment at 300 GHz," 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS), 1-5, 2019.

11. Sheikh, F., I. B. Mabrouk, A. Alomainy, Q. H. Abbasi, and T. Kaiser, "Indoor material properties extraction from scattering parameters at frequencies from 750 GHz to 1.1 THz," 2019 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AM, 28-30, 2019.
doi:10.1109/IMWS-AMP.2019.8880096

12. Kleine-Ostmann, T., M. Salhi, M. Kannicht, S. Priebe, T. Kürner, and T. Schrader, "Broadband channel measurements between 50 GHz and 325 GHz: Comparison of different propagation scenarios," 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2, 2013.

13. Sheikh, F., Y. Zantah, N. Zarifeh, and T. Kaiser, "Channel measurements of 0.9-1.1 THz wireless links using VNA extenders," 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 1-2, 2021.

14. Moon, E., T. Jeon, and D. R. Grischkowsky, "Long-path THz-TDS atmospheric measurements between buildings," IEEE Transactions on Terahertz Science and Technology, Vol. 5, No. 5, 742-750, Sept. 2015.
doi:10.1109/TTHZ.2015.2443491

15. He, D., B. Ai, K. Guan, L. Wang, Z. Zhong, and T. Kürner, "The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial," IEEE Communications Surveys & Tutorials, Vol. 21, No. 1, 10-27, Firstquarter 2019.
doi:10.1109/COMST.2018.2865724

16. Yang, Y., W. Wang, B. Tang, Y. Wu, J. Jia, H. Li, and Y. Liu, "Channel measurements and propagation characterization for indoor terahertz communication," International Journal of RF and Microwave Computer-Aided Engineering, 10.1002/mmce.23324, 2022.