1. Brock, H., B. Berker, and E. Ali, "Design of an external-rotor direct drive E-bike switched reluctance motor," IEEE Transactions on Vehicular Technology, Vol. 69, No. 3, 2552-2562, 2020.
doi:10.1109/TVT.2020.2965943 Google Scholar
2. Lin, J. N., N. Schofield, and E. Ali, "External-rotor 6-10 switched reluctance motor for an electric bicycle," IEEE Transactions on Transportation Electrification, Vol. 1, No. 4, 348-356, 2015.
doi:10.1109/TTE.2015.2502543 Google Scholar
3. Berker, B., H. Brock, D. Alan, et al. "Making the case for switched reluctance motors for propulsion applications," IEEE Transactions on Vehicular Technology, Vol. 69, No. 7, 7172-7186, 2020.
doi:10.1109/TVT.2020.2993725 Google Scholar
4. Anvari, B., H. A. Toliyat, and B. Fahimi, "Simultaneous optimization of geometry and firing angles for in-wheel switched reluctance motor drive," Current Forestry Reports, Vol. 4, No. 1, 322-329, 2018. Google Scholar
5. Ma, C. and L. Y. Qu, "Multiobjective optimization of switched reluctance motors based on design of experiments and particle swarm optimization," IEEE Transactions on Energy Conversion, Vol. 30, No. 3, 1144-1153, 2015.
doi:10.1109/TEC.2015.2411677 Google Scholar
6. Zhang, Z., S. H. Rao, and X. Zhang, "Performance prediction of switched reluctance motor using improved generalized regression neural networks for design optimization," China Electrotechnical Society Transactions on Electrical Machines and Systems, Vol. 2, No. 4, 371-376, 2018.
doi:10.30941/CESTEMS.2018.00047 Google Scholar
7. Xia, B., Z. Ren, Y. L. Zhang, and C. Koh, "An adaptive optimization algorithm based on kriging interpolation with spherical model and its application to optimal design of switched reluctance motor," Journal of Electrical Engineering and Technology, Vol. 9, No. 5, 1544-1550, 2014.
doi:10.5370/JEET.2014.9.5.1544 Google Scholar
8. Hua, Y. Z., H. Q. Zhu, M. Gao, and Z. Ji, "Multi-objective optimization design of permanent magnet assisted bearingless synchronous reluctance motor using NSGA-II," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10477-10487, 2020.
doi:10.1109/TIE.2020.3037873 Google Scholar
9. Nagarajan, V. S., B. Mahadevan, V. Kamaraj, et al. "Design optimization of ferrite assisted synchronous reluctance motor using multi-objective differential evolution algorithm," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 36, No. 1, 219-239, 2017.
doi:10.1108/COMPEL-06-2016-0253 Google Scholar
10. Mohamed, E., A. Mohamed, R. Hegazy, and N. I. Mohamed, "Finite element based overall optimization of switched reluctance motor using multi-objective genetic algorithm (Nsga-II)," Mathematics, Vol. 9, No. 5, 1-20, 2021. Google Scholar
11. Rong, T., L. Ke, D. Wei, Y. T. Wang, et al. "Reference point based multi-objective optimization of reservoir operation: A comparison of three algorithms," Water Resources Management, Vol. 34, No. 3, 1005-1020, 2020.
doi:10.1007/s11269-020-02485-9 Google Scholar
12. Hu, J., G. Yu, J. H. Zheng, and J. Zou, "A preference-based multi-objective evolutionary algorithm using preference selection radius," Soft Computing --- A Fusion of Foundations, Methodologies & Applications, Vol. 21, No. 17, 5025-5051, 2017. Google Scholar
13. Wang, L. P., M. L. Zhang, F. Y. Qiu, and B. Jiang, "Many-objective optimization algorithm with preference based on the angle penalty distance elite selection strategy," Jisuanji Xuebao/Chinese Journal of Computers, Vol. 41, No. 1, 236-253, 2018. Google Scholar
14. Wang, S. F., J. H. Zheng, J. J. Hu, J. Zou, and G. Yu, "Multi-objective evolutionary algorithm for adaptive preference radius to divide region," Journal of Software, Vol. 28, No. 10, 2704-2721, 2017. Google Scholar
15. Molina, J., L. V. Santana, A. G. Hernandez-Diaz, C. A. Coello Coello, and R. Caballero, "g-dominance: Reference point based dominance for multiobjective metaheuristics," European Journal of Operational Research, Vol. 197, No. 2, 685-692, 2009.
doi:10.1016/j.ejor.2008.07.015 Google Scholar
16. Said, B. L., S. Bechikh, and K. Ghedira, "The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making," IEEE Transactions on Evolutionary Computation, Vol. 14, No. 5, 801-818, 2010.
doi:10.1109/TEVC.2010.2041060 Google Scholar
17. Li, K., Q. Zhang, S. Kwong, M. Li, and R. Wang, "Stable matching-based selection in evolutionary multiobjective optimization," IEEE Transactions on Evolutionary Computation, Vol. 18, No. 6, 909-923, 2014.
doi:10.1109/TEVC.2013.2286492 Google Scholar
18. Lei, G., C. Liu, J. Zhu, and Y. Guo, "Techniques for multilevel design optimization of permanent magnet motors," IEEE Transactions on Energy Conversion, Vol. 30, No. 4, 1574-1584, 2015.
doi:10.1109/TEC.2015.2444434 Google Scholar
19. Lei, G., W. Xu, J. Hu, J. Zhu, Y. Guo, and K. Shao, "Multilevel design optimization of a FSPMM drive system by using sequential subspace optimization method," IEEE Transactions on Magnetics, Vol. 50, No. 2, 685-688, 2014.
doi:10.1109/TMAG.2013.2282363 Google Scholar
20. Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 182-197, 2002.
doi:10.1109/4235.996017 Google Scholar
21. Altinoz, O. T., A. E. Yilmaz, and G. W.Weber, "Improvement of the gravitational search algorithm by means of low-discrepancy sobol quasi random-number sequence based initialization," Advances in Electrical and Computer Engineering, Vol. 14, No. 3, 55-62, 2014.
doi:10.4316/AECE.2014.03007 Google Scholar
22. Navid, A., S. Khalilarya, and M. Abbasi, "Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process," Fuel, Vol. 228, 349-367, 2018.
doi:10.1016/j.fuel.2018.04.142 Google Scholar
23. Kumar, A. and S. Devi, "Novel center symmetric local binary pattern and chi square fuzzy c-mean clustering based segmentation in medical imaging technique," International Journal of Scientific and Technology Research, Vol. 8, No. 7, 697-705, 2019. Google Scholar
24. Seong, J. H. and D. H. Seo, "Wi-Fi fingerprint using radio map model based on MDLP and euclidean distance based on the Chi squared test," Wireless Networks, Vol. 25, No. 6, 3019-3027, 2019.
doi:10.1007/s11276-018-1700-9 Google Scholar
25. Mohammadi, A., M. N. Omidvar, and X. Li, "A new performance metric for user-preference based multi-objective evolutionary algorithms," IEEE Congress on Evolutionary Computation: CEC 2013, Vol. 4, 2564-3418, 2013. Google Scholar
26. Bosman, P. A. N. and D. Thierens, "The balance between proximity and diversity in multiobjective evolutionary algorithms," IEEE Transactions on Evolutionary Computation, Vol. 7, No. 2, 174-188, 2003.
doi:10.1109/TEVC.2003.810761 Google Scholar