Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-20
Design and Analysis of a Wireless Power Transmitting System for Capsule Robot Using Two-Dimensional Combined Solenoid Coils
By
Progress In Electromagnetics Research M, Vol. 113, 163-172, 2022
Abstract
Wireless power transmission system (WPTS) based on electromagnetic induction is a promising way to power a gastrointestinal capsule robot (CR) for wireless diagnosis, which typically consists of a one-dimensional (1-D) power transmitting coil (PTC) to excite an alternating magnetic field and a three-dimensional (3-D) power receiving coil (PRC) to induce signal. However, it is difficult to apply a 3-D PRC to practical medical applications since the oversize bodily form of the mounting receiver brings the extra challenge of design for microCR. This paper proposes a novel WPTS with space-saving architecture by combining a two-dimensional (2-D) power transmitting coil (PTC) outside the human and 1-D PRC onboard the CR, which can permit CR to accomplish the mission of exploring the intestinal space with wireless energy supplying owing to small size related to 1-D PTC. The analytical expressions of the magnetic flux density, magnetic field orientation, and uniform magnetic field excited by the designed PTC are derived. Simulated and experimental outcomes are implemented to achieve the desired magnetic field strength and direction by changing the transmission current of PTC, which verifies the feasibility and effectiveness of developed methods. And the magnetic field uniformity is greater than 44%. It can basically cover the 20 cm×20 cm area of the human abdomen at all times, which can permit the operational requirements of the CR in the practical case.
Citation
Chen Gao Jinyang Gao Changshun Yuan Jinshan Zhou Siyu Tian Peng Huang , "Design and Analysis of a Wireless Power Transmitting System for Capsule Robot Using Two-Dimensional Combined Solenoid Coils," Progress In Electromagnetics Research M, Vol. 113, 163-172, 2022.
doi:10.2528/PIERM22062501
http://www.jpier.org/PIERM/pier.php?paper=22062501
References

1. Mapara, S. S. and V. B. Patravale, "Medical capsule robots: A renaissance for diagnostics, drug delivery and surgical treatment," J. Control Release, Vol. 261, 337-351, Sep. 2017.
doi:10.1016/j.jconrel.2017.07.005

2. Woods, S. P. and T. G. Constandinou, "Wireless capsule endoscope for targeted drug delivery: Mechanics and design considerations," IEEE Trans. Biomed. Eng., Vol. 60, No. 4, 945-953, Apr. 2013.
doi:10.1109/TBME.2012.2228647

3. Guo, S., Q. Yang, L. Bai, and Y. Zhao, "Development of multiple capsule robots in pipe," Micromachines, Vol. 9, No. 6, 259, May 2018.
doi:10.3390/mi9060259

4. Jia, Z., G. Yan, H. Liu, Z. Wang, P. Jiang, and Y. Shi, "The optimization of wireless power transmission: Design and realization," Int. J. Med. Robot, Vol. 8, No. 3, 337-347, Sep. 2012.
doi:10.1002/rcs.1428

5. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "Stable and high-efficiency wireless power transfer system for robotic capsule using a modified helmholtz coil," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, 1113-1122, Sep. 2016.
doi:10.1109/TIE.2016.2614268

6. Ciuti, G., A. Menciassi, and P. Dario, "Capsule endoscopy: From current achievements to open challenges," IEEE Reviews in Biomedical Engineering, Vol. 4, 59-72, 2011.
doi:10.1109/RBME.2011.2171182

7. Jia, Z., G. Yan, P. P. Jiang, Z. Wang, and H. Liu, "Efficiency optimization of wireless power transmission systems for active capsule endoscopes," Physiol. Meas., Vol. 32, No. 10, 1561-1573, Oct. 2011.

8. Basar, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "Application of wireless power transmission systems in wireless capsule endoscopy: An overview," Sensors, Vol. 14, No. 6, Art. No. 6, Jun. 2014.

9. Basar, Md. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "An improved wearable resonant wireless power transfer system for biomedical capsule endoscope," IEEE Transactions on Industrial Electronics, Vol. 65, No. 10, 7772-7781, 2018.
doi:10.1109/TIE.2018.2801781

10. Baser, M. R., M. Y. Ahmad, J. Cho, and F. Ibrahim, "An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy," Sensors and Actuators A: Physical, Vol. 249, 207-216, 2016.
doi:10.1016/j.sna.2016.08.035

11. Gao, J., G. Yan, Y. Shi, H. Cao, K. Huang, H. Gao, and J. Liu, "Analysis of connection way of a three-dimensional receiving coil onboard a capsule robot for wireless power transmission," Progress In Electromagnetics Research M, Vol. 78, 39-48, 2019.

12. Ke, Q., W. Luo, G. Yan, and K. Yang, "Analytical model and optimized design of power transmitting coil for inductively coupled endoscope robot," IEEE Transactions on Biomedical Engineering, Vol. 63, No. 4, 694-706, Apr. 2016.
doi:10.1109/TBME.2015.2469137

13. Carta, R., J. Thoné, and R. Puers, "A wireless power supply system for robotic capsular endoscopes," Sensors and Actuators A: Physical, Vol. 162, 177-183, Aug. 2010.
doi:10.1016/j.sna.2009.12.025

14. Zhang, Z., C. Yuan, J. Gao, C. Gao, and J. Zhou, "Comparison of the uniformity and efficiency of the square and circular helmholtz coils for wireless power transmission system," Progress In Electromagnetics Research Letters, Vol. 97, 131-139, 2021.
doi:10.2528/PIERL21032203

15. Helander, H. F. and L. Fändriks, "Surface area of the digestive tract --- Revisited," Scand. J. Gastroenterol., Vol. 49, No. 6, 681-689, Jun. 2014.
doi:10.3109/00365521.2014.898326

16. Kopparthi, S. and P. Ajmera, "Power delivery for remotely located microsystems,", 31-39, May 2004.

17. Monson, J. R. T., et al., "Practice parameters for the management of rectal cancer (revised)," Dis. Colon. Rectum, Vol. 56, No. 5, 535-550, May 2013.
doi:10.1097/DCR.0b013e31828cb66c

18. Lenaerts, B. and R. Puers, "Inductive powering of a freely moving system," Sensors and Actuators A: Physical, Vol. 123-124, 522-530, Sep. 2005.
doi:10.1016/j.sna.2005.01.033

19. Gao, J., G. Yan, Z. Wang, P. Jiang, and D. Liu, "A capsule robot powered by wireless power transmission: Design of its receiving coil," Sensors and Actuators A: Physical, Vol. 234, 133-142, Oct. 2015.