1. Jovanov, E. and A. Milenkovic, "Body area networks for ubiquitous health-care applications: Opportunities and challenges," J. Med. Syst., Vol. 35, No. 5, 1245-1254, Oct. 2011.
doi:10.1007/s10916-011-9661-x Google Scholar
2. Martinez, I., et al. "Compact, low-profile and robust textile antennas with improved bandwidth for easy garment integration," IEEE Access, Vol. 8, 77490-77500, 2020, doi: 10.1109/ACCESS.2020.2989260.
doi:10.1109/ACCESS.2020.2989260 Google Scholar
3. Mashaghba, H. A., et al. "Bending assessment of dual-band split ring-shaped and bar slotted all-textile antenna for off-body WBAN/WLAN and 5G applications," 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), 1-5, 2020, doi: 10.1109/BCWSP50066.2020.9249403. Google Scholar
4. Német, A., S. Alkaraki, Q. H. Abassi, and S. F. Jilani, "A biodegradable textile-based graphene antenna for 5G wearable applications," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1583-1584, 2021, doi: 10.1109/APS/URSI47566.2021.9704120.
doi:10.1109/APS/URSI47566.2021.9704120 Google Scholar
5. Biçer, M. B. and E. A. Aydin, "Design and fabrication of rectangular microstrip antenna with various flexible substrates," 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 360-364, 2021, doi: 10.1109/3ICT53449.2021.9581451. Google Scholar
6. Jalil, M. E. B., M. K. Abd Rahim, N. A. Samsuri, N. A. Murad, H. A. Majid, K. Kamardin, and M. A. Abdullah, "Fractal Koch multiband textile antenna performance with bending, wet conditions and on the human body," Progress In Electromagnetics Research, Vol. 140, 633-652, 2013.
doi:10.2528/PIER13041212 Google Scholar
7. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, May 1971, doi: 10.1109/TAP.1971.1139935.
doi:10.1109/TAP.1971.1139935 Google Scholar
8. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971, doi: 10.1109/TAP.1971.1139999.
doi:10.1109/TAP.1971.1139999 Google Scholar
9. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, Sep. 1971, doi: 10.1109/TAP.1971.1139990.
doi:10.1109/TAP.1971.1139990 Google Scholar
10. Bauer, J. E. and P. K. Gentner, "Characteristic mode analysis of a circular polarised rectangular patch antenna," Proc. 13th Eur. Conf. Antennas Propag. (EuCAP), 1-3, Krakow, Poland, Apr. 2019. Google Scholar
11. Elias, B. B. Q., P. J. Soh, A. A. Al-Hadi, and P. Akkaraekthalin, "Gain optimization of low-profile textile antennas using CMA and active mode subtraction method," IEEE Access, Vol. 9, 23691-23704, 2021, doi: 10.1109/ACCESS.2021.3056905.
doi:10.1109/ACCESS.2021.3056905 Google Scholar
12. Lamsalli, M., A. El Hamichi, M. Boussouis, N. A. Touhami, and T. Elhamadi, "Genetic algorithm optimization for microstrip patch antenna miniaturization," Progress In Electromagnetics Research Letters, Vol. 60, 113-120, 2016.
doi:10.2528/PIERL16041907 Google Scholar
13. Kaschel, H. and C. Ahumada, "Design of rectangular microstrip patch antenna for 2.4 GHz applied a WBAN," 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), 1-6, 2018, doi: 10.1109/ICA-ACCA.2018.8609703. Google Scholar
14. Miralles, E., C. Andreu, M. Cabedo-Fabrés, M. Ferrando-Bataller, and J. F. Monserrat, "UWB on-body slotted patch antennas for in-body communications," 2017 11th European Conference on Antennas and Propagation (EUCAP), 167-171, 2017, doi: 10.23919/EuCAP.2017.7928598.
doi:10.23919/EuCAP.2017.7928598 Google Scholar
15. Gupta, A., A. Kansal, and P. Chawla, "Design of a compact dual-band antenna for on-/off body communication," IETE J. Res., 1-9, 2020. Google Scholar
16. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, 2021, doi: 10.1109/TAP.2021.3138504. Google Scholar
17. Yang, H. and X. Liu, "Screen-printed dual-band and dual-circularly polarized textile antenna for wearable applications," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-4, 2021, doi: 10.23919/EuCAP51087.2021.9411013. Google Scholar
18. Yang, H. and X. Liu, "Wearable dual-band and dual-polarized textile antenna for on- and off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2324-2328, Dec. 2020, doi: 10.1109/LAWP.2020.3032540.
doi:10.1109/LAWP.2020.3032540 Google Scholar
19. Regina, S. and A. Merline, "Flexible leather substrate dual-band wearable antenna with impact analysis on testing under wet condition for human rescue system," Textile Research Journal, Vol. 91, No. 17-18, 1927-1942, 2021, doi:10.1177/00405175211006214.
doi:10.1177/00405175211006214 Google Scholar
20. Kumar Naik, K. and D. Gopi, "Flexible CPW-fed split-triangular shaped patch antenna for WiMAX applications," Progress In Electromagnetics Research M, Vol. 70, 157-166, 2018.
doi:10.2528/PIERM18060304 Google Scholar
21. Zakir Hossain, A. K. M., N. B. Hassim, S. M. Kayser Azam, Md. S. Islam, and M. K. Hasan, "A planar antenna on flexible substrate for future 5G energy harvesting in Malaysia," International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 11, No. 10, 2020, doi.org/10.14569/IJACSA.2020.0111020. Google Scholar