Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-04
Design of a Wideband Spring Textile Antenna for Wearable 5G and IoT Applications Using Characteristic Mode Analysis
By
Progress In Electromagnetics Research M, Vol. 112, 177-189, 2022
Abstract
This paper presents the design and practical implementation of a wideband spring textile (WST) antenna for wearable communications. The antenna is designed on a felt substrate having a compact dimension of 32 × 42 × 3 mm3 (0.38λg × 0.5λg × 0.036λg). This antenna operates in the 3.14 to 5.45 GHz frequency range, has a bandwidth (BW) of around 2306 MHz, and has a peak realized gain of 6 dBi at 3.5 GHz. Due to a broad frequency coverage, this antenna can be used in a wide range of wireless applications, including 5G and IoT. The proposed design is analyzed in terms of reflection coefficient, radiation pattern, efficiency, gain, and surface current. Using the same electromagnetic simulation software, both characteristic mode analysis (CMA) and the method of moments (MoM) are applied in the design process. The simulated results on a human chest phantom demonstrate the -10-dB impedance bandwidths of 1461 MHz. The antenna prototype is fabricated for verification, and the simulated and measured results demonstrate that the proposed antenna is suitable for wideband on-body applications given its low-profile implementation and mechanical flexibility.
Citation
Bashar Qas Elias, and Ping Jack Soh, "Design of a Wideband Spring Textile Antenna for Wearable 5G and IoT Applications Using Characteristic Mode Analysis," Progress In Electromagnetics Research M, Vol. 112, 177-189, 2022.
doi:10.2528/PIERM22062909
References

1. Jovanov, E. and A. Milenkovic, "Body area networks for ubiquitous health-care applications: Opportunities and challenges," J. Med. Syst., Vol. 35, No. 5, 1245-1254, Oct. 2011.
doi:10.1007/s10916-011-9661-x

2. Martinez, I., et al. "Compact, low-profile and robust textile antennas with improved bandwidth for easy garment integration," IEEE Access, Vol. 8, 77490-77500, 2020, doi: 10.1109/ACCESS.2020.2989260.
doi:10.1109/ACCESS.2020.2989260

3. Mashaghba, H. A., et al. "Bending assessment of dual-band split ring-shaped and bar slotted all-textile antenna for off-body WBAN/WLAN and 5G applications," 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), 1-5, 2020, doi: 10.1109/BCWSP50066.2020.9249403.

4. Német, A., S. Alkaraki, Q. H. Abassi, and S. F. Jilani, "A biodegradable textile-based graphene antenna for 5G wearable applications," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 1583-1584, 2021, doi: 10.1109/APS/URSI47566.2021.9704120.
doi:10.1109/APS/URSI47566.2021.9704120

5. Biçer, M. B. and E. A. Aydin, "Design and fabrication of rectangular microstrip antenna with various flexible substrates," 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 360-364, 2021, doi: 10.1109/3ICT53449.2021.9581451.

6. Jalil, M. E. B., M. K. Abd Rahim, N. A. Samsuri, N. A. Murad, H. A. Majid, K. Kamardin, and M. A. Abdullah, "Fractal Koch multiband textile antenna performance with bending, wet conditions and on the human body," Progress In Electromagnetics Research, Vol. 140, 633-652, 2013.
doi:10.2528/PIER13041212

7. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 348-358, May 1971, doi: 10.1109/TAP.1971.1139935.
doi:10.1109/TAP.1971.1139935

8. Harrington, R. and J. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 622-628, Sep. 1971, doi: 10.1109/TAP.1971.1139999.
doi:10.1109/TAP.1971.1139999

9. Harrington, R. and J. Mautz, "Computation of characteristic modes for conducting bodies," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 5, 629-639, Sep. 1971, doi: 10.1109/TAP.1971.1139990.
doi:10.1109/TAP.1971.1139990

10. Bauer, J. E. and P. K. Gentner, "Characteristic mode analysis of a circular polarised rectangular patch antenna," Proc. 13th Eur. Conf. Antennas Propag. (EuCAP), 1-3, Krakow, Poland, Apr. 2019.

11. Elias, B. B. Q., P. J. Soh, A. A. Al-Hadi, and P. Akkaraekthalin, "Gain optimization of low-profile textile antennas using CMA and active mode subtraction method," IEEE Access, Vol. 9, 23691-23704, 2021, doi: 10.1109/ACCESS.2021.3056905.
doi:10.1109/ACCESS.2021.3056905

12. Lamsalli, M., A. El Hamichi, M. Boussouis, N. A. Touhami, and T. Elhamadi, "Genetic algorithm optimization for microstrip patch antenna miniaturization," Progress In Electromagnetics Research Letters, Vol. 60, 113-120, 2016.
doi:10.2528/PIERL16041907

13. Kaschel, H. and C. Ahumada, "Design of rectangular microstrip patch antenna for 2.4 GHz applied a WBAN," 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), 1-6, 2018, doi: 10.1109/ICA-ACCA.2018.8609703.

14. Miralles, E., C. Andreu, M. Cabedo-Fabrés, M. Ferrando-Bataller, and J. F. Monserrat, "UWB on-body slotted patch antennas for in-body communications," 2017 11th European Conference on Antennas and Propagation (EUCAP), 167-171, 2017, doi: 10.23919/EuCAP.2017.7928598.
doi:10.23919/EuCAP.2017.7928598

15. Gupta, A., A. Kansal, and P. Chawla, "Design of a compact dual-band antenna for on-/off body communication," IETE J. Res., 1-9, 2020.

16. Yang, H., X. Liu, Y. Fan, and L. Xiong, "Dual-band textile antenna with dual circular polarizations using polarization rotation AMC for off-body communications," IEEE Transactions on Antennas and Propagation, 2021, doi: 10.1109/TAP.2021.3138504.

17. Yang, H. and X. Liu, "Screen-printed dual-band and dual-circularly polarized textile antenna for wearable applications," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-4, 2021, doi: 10.23919/EuCAP51087.2021.9411013.

18. Yang, H. and X. Liu, "Wearable dual-band and dual-polarized textile antenna for on- and off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2324-2328, Dec. 2020, doi: 10.1109/LAWP.2020.3032540.
doi:10.1109/LAWP.2020.3032540

19. Regina, S. and A. Merline, "Flexible leather substrate dual-band wearable antenna with impact analysis on testing under wet condition for human rescue system," Textile Research Journal, Vol. 91, No. 17-18, 1927-1942, 2021, doi:10.1177/00405175211006214.
doi:10.1177/00405175211006214

20. Kumar Naik, K. and D. Gopi, "Flexible CPW-fed split-triangular shaped patch antenna for WiMAX applications," Progress In Electromagnetics Research M, Vol. 70, 157-166, 2018.
doi:10.2528/PIERM18060304

21. Zakir Hossain, A. K. M., N. B. Hassim, S. M. Kayser Azam, Md. S. Islam, and M. K. Hasan, "A planar antenna on flexible substrate for future 5G energy harvesting in Malaysia," International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 11, No. 10, 2020, doi.org/10.14569/IJACSA.2020.0111020.