Vol. 112
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-31
A Miniaturized Wideband Wilkinson Power Divider for IoT Sub-GHz Applications
By
Progress In Electromagnetics Research M, Vol. 112, 243-253, 2022
Abstract
This paper presents a single stage 2-way Wilkinson Power Divider (WPD) suitable for Internet of Things (IoT) low frequency applications in the band from 200 MHz to 1 GHz. It is realized using a meandered line, and an open shunt stub matching network is added to get a compact structure. Moreover, a Vertical Periodic Defected Ground Structure (VPDGS) is added below each arm in order to improve the performance at the center frequency without adding extra length to the divider. The size of the proposed power divider is 30 × 15.3 mm2 (0.082λg × 0.041λg). The fabricated power divider achieves a fractional bandwidth of 107%, an input return loss of better than 10 dB, an output return loss of 20 dB, an isolation of better than -10 dB and maximum exceeded insertion loss of 0.9 dB. The proposed compact power divider is implemented on Rogers RT/ Duroid 5880 with thickness 0.254 mm in order to bend on any conformal surface.
Citation
Shaimaa Abdelaziz Mahmoud Osman Mohamed S. El-Gendy Hadia El-Hennawy Esmat A. Abdallah , "A Miniaturized Wideband Wilkinson Power Divider for IoT Sub-GHz Applications," Progress In Electromagnetics Research M, Vol. 112, 243-253, 2022.
doi:10.2528/PIERM22070508
http://www.jpier.org/PIERM/pier.php?paper=22070508
References

1. Misra, G., V. Kumar, A. Agarwal, and K. Agarwal, "Internet of things (IoT) --- A technological analysis and survey on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future generation computer communication system technology)," American Journal of Electrical and Electronic Engineering, Vol. 4, 23-32, 2016.

2. Jin, H., G. Q. Luo, W. Wang, W. Che, and K.-S. Chin, "Integration design of millimeter-wave filtering patch antenna array with SIW four-way anti-phase filtering power divider," IEEE Access, Vol. 7, 49804-49812, 2019.
doi:10.1109/ACCESS.2019.2909771

3. Reese, R., M. Jost, M. Nickel, E. Polat, R. Jakoby, and H. Maune, "A fully dielectric lightweight antenna array using a multimode interference power divider at W-band," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3236-3239, 2017.
doi:10.1109/LAWP.2017.2771385

4. Xiao, B., H. Yao, M. Li, J.-S. Hong, and K. L. Yeung, "Flexible wideband microstrip-slotline-microstrip power divider and its application to antenna array," IEEE Access, Vol. 7, 143973-143979, 2019.
doi:10.1109/ACCESS.2019.2944462

5. Shanmugam Bhaskar, V. and E. L. Tan, "Power divider with wideband harmonic suppression for center-fed antenna arrays," Microwave and Optical Technology Letters, Vol. 63, 3008-3014, 2021.
doi:10.1002/mop.33000

6. Ali, M., et al., "Package-integrated, wideband power dividing networks and antenna arrays for 28-GHz 5G new radio bands," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 10, 1515-1523, 2020.
doi:10.1109/TCPMT.2020.3013725

7. Mohammadi, P., A. Piroutiniya, and M. H. Rasekhmanesh, "A novel compact feeding network for array antenna," Progress In Electromagnetics Research Letters, Vol. 59, 101-107, 2016.
doi:10.2528/PIERL16021004

8. Feng, W., Y. Shi, X. Y. Zhou, X. Shen, and W. Che, "A bandpass push-pull high power amplifier based on SIW filtering balun power divider," IEEE Transactions on Plasma Science, Vol. 47, 4281-4286, 2019.
doi:10.1109/TPS.2019.2932083

9. Kim, K. and C. Nguyen, "A V-band power amplifier with integrated Wilkinson power dividers-combiners and transformers in 0.18-μm SiGe BiCMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 66, 337-341, 2018.
doi:10.1109/TCSII.2018.2850899

10. Nouri, M. E., S. Roshani, M. H. Mozaffari, and A. Nosratpour, "Design of high-efficiency compact Doherty power amplifier with harmonics suppression and wide operation frequency band," AEU --- International Journal of Electronics and Communications, Vol. 118, 153168, May 1, 2020.
doi:10.1016/j.aeue.2020.153168

11. Qi, X. and F. Xiao, "Filtering Doherty power amplifier," IET Microwaves, Antennas & Propagation, Vol. 14, 1074-1078, 2020.
doi:10.1049/iet-map.2019.0835

12. Zhang, L., X. Tong, J. A. Han, and X. Cheng, "A 45-61 GHz monolithic microwave integrated circuit subharmonic mixer incorporating dual-band power divider," Microwave and Optical Technology Letters, Vol. 62, 2851-2856, 2020.
doi:10.1002/mop.32401

13. Chang, Y.-T. and H.-C. Lu, "A V-band ultra low power sub-harmonic I/Q down-conversion mixer using current re-used technique," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, 2893-2897, 2020.
doi:10.1109/TCSII.2020.2989368

14. Yoon, K. C. and K. G. Kim, "Miniaturization of a single-ended mixer using T-shaped Wilkinson power combiner for medical wireless communication applications," Microwave and Optical Technology Letters, Vol. 61, 1977-1982, 2019.
doi:10.1002/mop.31788

15. Piroutiniya, A. and P. Mohammadi, "The substrate integrated waveguide T-junction power divider with arbitrary power dividing ratio," The Applied Computational Electromagnetics Society Journal (ACES), 428-433, 2016.

16. Pozar, D. M., Microwave Engineering, 4th Ed., Wiley, 2011.

17. Mishra, B., A. Rahman, S. Shaw, M. Mohd, S. Mondal, and P. P. Sarkar, "Design of an ultra-wideband Wilkinson power divider," 2014 First International Conference on Automation, Control, Energy and Systems (ACES), 1-4, 2014.

18. Hu, J., J. Huang, L. Kang, J. Zhou, Z. Zhang, and W. Peng, "Design of flexible broadband power divider based on defect ground compensation," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), 1-4, 2020.

19. Heidari, S., R. Nemati, N. Masoumi, J. R. Mohassel, and N. Karimian, "DGS for a Wilkinson power divider using a symmetric butterfly comb," 2019 27th Iranian Conference on Electrical Engineering (ICEE), 264-268, 2019.
doi:10.1109/IranianCEE.2019.8786469

20. Chen, W., S. Li, Z. Wu, and Y. Liu, "Wideband power divider based on klopfenstein tapered line," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.

21. Moradian, M., "Wideband in-phase slot-coupled power dividers," AEU --- International Journal of Electronics and Communications, Vol. 82, 327-333, 2017.
doi:10.1016/j.aeue.2017.09.014

22. Guo, L., H. Zhu, and A. Abbosh, "Wideband tunable in-phase power divider using three-line coupled structure," IEEE Microwave and Wireless Components Letters, Vol. 26, 404-406, 2016.
doi:10.1109/LMWC.2016.2562058

23. Younesiraad, H., M. Bemani, and M. Fozi, "A novel fully planar quad band Wilkinson power divider," AEU --- International Journal of Electronics and Communications, Vol. 74, 75-82, 2017.
doi:10.1016/j.aeue.2017.01.020

24. Liu, Y., S. Sun, and L. Zhu, "2n-way wideband filtering power dividers with good isolation enhanced by a modified isolation network," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 6, 3177-3187, 2022.
doi:10.1109/TMTT.2022.3166199

25. Rahardi, R., M. Rizqi, W. D. Lukito, R. Virginio, M. Hilmi, and A. Munir, "Meander line-based Wilkinson power divider for unmanned aerial vehicle application," 2020 IEEE International Conference on Communication, Networks and Satellite (Comnetsat), 178-181, 2020.
doi:10.1109/Comnetsat50391.2020.9328980

26. Zhao, M., A. Kumar, C. Wang, B. Xie, T. Qiang, and K. K. Adhikari, "Design method of dual-band Wilkinson power divider with improved out-of-band rejection performance and high design exibility," AEU --- International J. of Electronics and Communications, Vol. 110, 152844, 2019.
doi:10.1016/j.aeue.2019.152844

27. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microwave and Wireless Components Letters, Vol. 18, 518-520, 2008.
doi:10.1109/LMWC.2008.2001009

28. Ahmed, O. M. and A.-R. Sebak, "Experimental investigation of new ultra wideband in-phase and quadrature-phase power splitters," Journal of Electromagnetic Waves and Applications, Vol. 23, 2261-2270, 2009.
doi:10.1163/156939309790416053

29. Osman, S. A. M., A. M. E. El-Tager, F. I. Abdelghany, and I. M. Hafez, "Two-way modified Wilkinson power divider for UWB applications using two sections of unequal electrical lengths," Progress In Electromagnetics Research C, Vol. 68, 221-233, 2016.
doi:10.2528/PIERC16072107

30. Chandrasekarani, S. S., S. R. Avaninathan, and P. Murugesan, "A meander coupled line wideband power divider with open stubs and DGS for mobile application," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 25, 3637-3644, 2017.
doi:10.3906/elk-1603-282

31. Hayati, M., A. Abdipour, and A. Abdipour, "A Wilkinson power divider with harmonic suppression and size reduction using high-low impedance resonator cells," Radioengineering, Vol. 24, 137-141, 2015.
doi:10.13164/re.2015.0137

32. Liu, W.-Q., F. Wei, C.-H. Pang, and X.-W. Shi, "Design of a compact ultra-wideband power divider," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2012.

33. Ahmed, O. and A.-R. Sebak, "A modified Wilkinson power divider/combiner for ultrawideband communications," 2009 IEEE Antennas and Propagation Society International Symposium, 1-4, 2009.

34. Zhou, B., H. Wang, and W.-X. Sheng, "A modified UWB Wilkinson power divider using delta stub," Progress In Electromagnetics Research Letters, Vol. 19, 49-55, 2010.
doi:10.2528/PIERL10101805

35. Liu, Y., L. Zhu, and S. Sun, "Proposal and design of a power divider with wideband power division and port-to-port isolation: A new topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, 1431-1438, 2020.
doi:10.1109/TMTT.2019.2955107

36. Srisathit, K., P. Jadpum, and W. Surakampontorn, "Miniature Wilkinson divider and hybrid, coupler with harmonic suppression, using T-shaped transmission line," 2007 Asia-Pacific Microwave Conference, 1-4, 2007.

37. Hazeri, A. R. and T. Faraji, "Miniaturisation and harmonic suppression of the branch-line hybrid coupler," International Journal of Electronics, Vol. 98, 1699-1710, 2011.
doi:10.1080/00207217.2011.609968

38. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
doi:10.2528/PIERB08031401

39. Lim, J.-S., Y.-T. Lee, C.-S. Kim, D. Ahn, and S. Nam, "A vertically periodic defected ground structure and its application in reducing the size of microwave circuits," IEEE Microwave and Wireless Components Letters, Vol. 12, 479-481, 2002.

40. Yu, T., "A broadband Wilkinson power divider based on the segmented structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, 1902-1911, 2018.
doi:10.1109/TMTT.2018.2799579

41. Cohn, S. B., "A class of broadband three-port TEM-mode hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 16, 110-116, 1968.
doi:10.1109/TMTT.1968.1126617

42. Steer, M., Microwave and RF Design, NC State University, 2019.

43. Nagi, H. S., "Miniature lumped element 180/spl deg/Wilkinson divider," IEEE MTT-S International Microwave Symposium Digest, 2003, Vol. 1, 55-58, 2003.
doi:10.1109/MWSYM.2003.1210882

44. Ma, Z., W. Zhang, F. Liu, and M. Ohira, "A novel 10 MHz-4 GHz Wilkinson power divider using lumped compensation elements," IEICE Electronics Express, Vol. 19, 20210465, 2022.
doi:10.1587/elex.19.20210465