Vol. 113
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-08-31
Focusing of the Electromagnetic Field in Several Given Areas of Space
By
Progress In Electromagnetics Research M, Vol. 113, 11-22, 2022
Abstract
The article describes the problem of spatial separation of devices operating in the same frequency range. The possibility of focusing electromagnetic fields in several specified regions of space is considered. The proposed method for focusing the electromagnetic field can be an additional method for separation devices that operate in the same frequency range. The system under consideration, consisting of space, radiating antennas and focusing points, is represented as an abstract multipole with the number of inputs equal to the number of radiating antennas and with a set of outputs equal to the number of focusing points. A coordinate system has been introduced that makes it possible to calculate the distances between radiation and focusing points. A method for calculating complex transmission coefficients between emission points and reception points is described. An analytical expression is obtained, a system of linear algebraic equations, which makes it possible to calculate the necessary amplitudes and phases of signals supplied to radiating antennas. A model in a computer-aided design system containing 56 radiating antennas is presented. 9 focus points were set, and 4 of them should have maxima of the electromagnetic field. The simulation confirmed the theoretical calculations. A method for optimizing the calculations of the initial amplitudes and phases by eliminating the elements of the characteristic matrix is considered. This made it possible to reduce the number of elements in the characteristic matrix.
Citation
Denis Iuzvik, and Maksim Stepanov, "Focusing of the Electromagnetic Field in Several Given Areas of Space," Progress In Electromagnetics Research M, Vol. 113, 11-22, 2022.
doi:10.2528/PIERM22070704
References

1. Huo, Y., X. Dong, W. Xu, and M. Yuen, "Cellular and WiFi co-design for 5G user equipment," 2018 IEEE 5G World Forum (5GWF), 256-261, 2018, doi: 10.1109/5GWF.2018.8517059.
doi:10.1109/5GWF.2018.8517059

2. Sawada, H., S. Araki, R. Mukai, and S. Makino, "Grouping separated frequency components by estimating propagation model parameters in frequency-domain blind source separation," IEEE Transactions on Audio, Speech, and Language Processing, Vol. 15, No. 5, 1592-1604, July 2007, doi: 10.1109/TASL.2007.899218.
doi:10.1109/TASL.2007.899218

3. Álvarez, J. and R. Ayestarán, "Near field multifocusing on antenna arrays via non-convex optimisation," IET Microwaves, Antennas & Propagation, 754-764, 2014.
doi:10.1049/iet-map.2013.0563

4. Buffi, A., A. Serra, P. Nepa, et al. "A focused planar microstrip array for 2.4 GHz RFID readers," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1536-1544, 2010.
doi:10.1109/TAP.2010.2044331

5. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1481-1487, 2001.
doi:10.1109/TAP.2011.2123069

6. Bogosanovic, M. and A. G. Williamson, "Microstrip antenna array with a beam focused in the near-field zone for application in noncontact microwave industrial inspection," IEEE Trans. Instrum. Meas., Vol. 56, No. 6, 2186-2195, 2007.
doi:10.1109/TIM.2007.907954

7. Ismail, T. H., D. I. Abu-Al-Nadi, and M. J. Mismar, "Phase-only control for antenna pattern synthesis of linear arrays using the Levenberg-Marquardt algorithm," Electromagnetics, Vol. 24, No. 7, 555-564, 2004.
doi:10.1080/02726340490496707

8. Sun, L., P.-F. Li, S.-W. Qu, and S. Yang, "A near-field focused array antenna with reconfigurable elements," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 319-320, 2016, doi: 10.1109/APCAP.2016.7843222.
doi:10.1109/APCAP.2016.7843222

9. Li, Y., S. Yu, N. Kou, Z. Ding, and Z. Zhang, "Cylindrical conformal array antenna for near field focusing," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 6, e23135, 2022.
doi:10.1002/mmce.23135

10. Smirnov, V. Yu., "Linear phased antenna arrays focused in the near field [Lineynie fazirovannie antennie reshetki, sfokusirovannie v blizhney zone]," News RGRTU [Vestnik RGRTU], 2008 (in Russian).

11. Obuhovec, V. A., "Synthesis of symmetrical microwave multipoles [Sintez simmetrichnih SVCH- mnogopolusnikov]," News of SFU [Izvestia YUFU], 177-185, 2018 (in Russian).

12. Cameron, R. J., "Analysis of multiport microwave networks," Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, 2nd Edition, Chapter 5, 147-175, 2018.

13. James, J. R., P. S. Hall, and C. Wood, Microstrip Antenna Theory and Design, Peter Peregrinus Ltd., London, 1981.
doi:10.1049/PBEW012E

14. Golio, M. and J. Golio, RF and Microwave Circuits, Measurements, and Modeling, CRC Press, 2007.
doi:10.1201/9781420006704

15. Steer, M., Fundamentals of Microwave and RF Design, University of North Carolina Press, 2019.
doi:10.5149/9781469656892_Steer

16. Aaen, P. H., Modeling and Characterization of RF and Microwave Power FETs, Cambridge University Press, 2011.

17. Elfergani, I. T. E., A. S. Hussaini, R. A. Abd-Alhameed, C. H. See, M. B. Child, and J. Rodriguez, "Design of a compact tuned antenna system for mobile MIMO applications," 2012 Loughborough Antennas & Propagation Conference (LAPC), 1-4, 2012, doi: 10.1109/LAPC.2012.6403013.

18. Zhang, C., Q. Lai, and C. Gao, "Measurement of active S-parameters on array antenna using directional couplers," 2017 IEEE Asia Pacific Microwave Conference (APMC), 1167-1170, 2017, doi: 10.1109/APMC.2017.8251665.
doi:10.1109/APMC.2017.8251665

19. Mauch, S., Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers, Mauch Publishing Company, 2003.