1. Mevoli, G., C. Lamacchia, P. Bia, A. Manna, D. Caratelli, and L. Mescia, "Supershaped sinuous antenna for UWB radar applications," 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), 1-3, IEEE, Aug. 2021, doi: 10.23919/ursigass51995.2021.9560346. Google Scholar
2. Abdollahvand, A., A. Pirhadi, H. Ebrahimian, and M. Abdollahvand, "A compact UWB printed antenna with bandwidth enhancement for in-body microwave imaging applications," Progress In Electromagnetics Research C, Vol. 55, 149-157, 2014. Google Scholar
3. Mohanna, M. M., E. A. Abdallah, H. El-Hennawy, and M. A. Attia, "A novel high directive WILLIS-SINHA tapered slot antenna for GPR application in detecting landmine," Progress In Electromagnetics Research C, Vol. 80, 181-198, 2018. Google Scholar
4. Hasim, N. S. B., K. A. H. Ping, M. T. Islam, Md. Z. Mahmud, S. Sahrani, D. A. A. Mat, and D. N. A. Zaidel, "A slotted UWB antipodal vivaldi antenna for microwave imaging applications," Progress In Electromagnetics Research M, Vol. 80, 35-43, 2019. Google Scholar
5. Alves, M. A., R. J. Port, and M. C. Rezende, "Simulations of the radar cross section of a stealth aircraft," 2007 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 409-412, 2007, doi: 10.1109/IMOC.2007.4404292. Google Scholar
6. Dikmen, C. M. and G. Çakir, "Double side axe shaped UWB antenna with reduced RCS," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), 215-217, 2013, doi: 10.1109/APMC.2013.6695098. Google Scholar
7. Xu, C., J. Su, and Z. Li, "Radar absorbing material applied to precise RCS regulation of complex scatterer structure," 2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 388-390, 2021, doi: 10.1109/IMWS-AMP53428.2021.9643935. Google Scholar
8. Pazokian, M., N. Komjani, and M. Karimipour, "Broadband RCS reduction of microstrip antenna using coding frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1382-1385, Aug. 2018, doi: 10.1109/lawp.2018.2846613. Google Scholar
9. Huang, X., Z. Zhao, and G. Wan, "A slotted frequency selective surface with its application in microstrip antenna RCS reduction," 2020 IEEE 3rd International Conference on Electronics Technology (ICET), 724-728, IEEE, May 2020, doi: 10.1109/icet49382.2020.9119716. Google Scholar
10. Chen, T., Q.-M. Cai, L. Zhu, B.-W. Luo, Y.-Y. Zhu, X. Cao, R. Zhang, N. Feng, and Y.-W. Zhao, "A high-gain, low RCS and dual-frequency microstrip antenna using frequency selective surface," 2019 Photonics & Electromagnetics Research Symposium --- Fall (PIERS --- Fall), 2249-2254, Xiamen, China, Dec. 17-20, 2019. Google Scholar
11. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion metasurface," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 2, 197-206, Jan. 2018, doi: 10.1017/s1759078717001477. Google Scholar
12. Chatterjee, J., A. Mohan, and V. Dixit, "Radar cross section reduction and gain enhancement of slot antenna using polarization conversion metasurface for X-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 31, No. 10, e22792, Jul. 2021, doi: 10.1002/mmce.22792. Google Scholar
13. Rajanna, P. K., K. Rudramuni, and K. Kandasamy, "Characteristic mode-based compact circularly polarized metasurface antenna for in-band RCS reduction," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 2, 131-137, Sep. 2019, doi: 10.1017/s1759078719001119. Google Scholar
14. Xie, P., G.-M. Wang, H.-P. Li, Y.-W. Wang, and B. Zong, "Wideband RCS reduction of high gain fabry-perot antenna employing a receiver-transmitter metasurface," Progress In Electromagnetics Research, Vol. 169, 103-115, 2020. Google Scholar
15. Zhu, L., Y. Liu, and Y. Jia, "A broadband low-RCS high-gain circularly polarized holographic antenna based on metasurface," 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-2, IEEE, May 2021, doi: 10.1109/icmmt52847.2021.9618044. Google Scholar
16. Parsha, M. K., A. Nandi, and B. Basu, "In-band RCS reduction antennas using an EBG surface," International Journal of Microwave and Wireless Technologies, 1-11, Jun. 2021, doi: 10.1017/s1759078721000933. Google Scholar
17. Modi, A. Y., C. A. Balanis, C. R. Birtcher, and H. N. Shaman, "Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 10, 5406-5417, Oct. 2017, doi: 10.1109/tap.2017.2734069. Google Scholar
18. Wang, F., Y. Ren, and K. Li, "Broadband RCS reduction of antenna with AMC using gradually concentric ring arrangement," International Journal of Antennas and Propagation, Vol. 2017, 1-7, 2017, doi: 10.1155/2017/1268947. Google Scholar
19. Agastra, E., A. Biberaj, O. Shurdi, B. Kamo, and A. Rakipi, "RCS analysis on ultra-wideband sinuous antenna with elliptical slots," 2022 Microwave Mediterranean Symposium (MMS), 1-6, IEEE, May 2022, doi: 10.1109/mms55062.2022.9825591. Google Scholar
20. Prasad, B. S. H. and M. V. S. Prasad, "Design and analysis of compact periodic slot multiband antenna with defected ground structure for wireless applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020. Google Scholar
21. Singh, A. and H. Singh, "Low RCS microstrip patch array with hybrid high impedance surface based ground plane," Progress In Electromagnetics Research Letters, Vol. 94, 75-84, 2020. Google Scholar
22. He, X., T. Chen, and X. Wang, "A novel low RCS design method for X-band Vivaldi antenna," International Journal of Antennas and Propagation, Vol. 2012, 1-6, 2012, doi: 10.1155/2012/218681. Google Scholar
23. Zhang, J., H. Li, Q. Zheng, J. Ding, and C. Guo, "Wideband radar cross-section reduction of a microstrip antenna using slots," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 9, 1042-1047, Aug. 2018, doi: 10.1017/s1759078718000569. Google Scholar
24. Zhang, J., Q. Zheng, H. Li, J. Ding, and C. Guo, "Wideband radar cross section reduction of a microstrip antenna with square slots," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 4, 341-350, Feb. 2019, doi: 10.1017/s1759078719000011. Google Scholar
25. Hao, Y., Y. Liu, K. Li, and S. Gong, "Wideband radar cross-section reduction of microstrip patch antenna with split-ring resonators," Electronics Letters, Vol. 51, No. 20, 1608-1609, Oct. 2015, doi: 10.1049/el.2015.1725. Google Scholar
26. Mescia, L., G. Mevoli, C. M. Lamacchia, M. Gallo, P. Bia, D. Gaetano, and A. Manna, "Sinuous antenna for uwb radar applications," Sensors, Vol. 22, No. 1, 248, 2022, doi: 10.3390/s22010248. Google Scholar
27. Lamacchia, C. M., M. Gallo, L. Mescia, P. Bia, A. Manna, C. Canestri, and D. Gaetano, "Non-conventional cavity backed sinuous antenna for UWB radar applications," 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 109-110, IEEE, Jul. 2020, doi: 10.1109/ieeeconf35879.2020.9329510. Google Scholar
28. Crocker, D. A. and W. R. Scott, "Sinuous antenna design for UWB radar," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1915-1916, IEEE, Jul. 2019, doi: 10.1109/apusncursinrsm.2019.8888630. Google Scholar
29. Agastra, E., L. Lucci, G. Pelosi, and S. Selleri, "High gain compact strip and slot UWB sinuous antennas," International Journal of Antennas and Propagation, Vol. 2012, 1-9, 2012, doi: 10.1155/2012/721412. Google Scholar
30. Luo, T. and Z. Nie, "RCS reduction of antipodal vivaldi antenna," 2015 Asia-Pacific Microwave Conference (APMC), Vol. 2, 1-3, IEEE, Dec. 2015, doi: 10.1109/apmc.2015.7413164. Google Scholar
31. Khoomwong, E. and C. Phongcharoenpanich, "Design of ultra-broadband bidirectional ring antenna with superellipse slot using MoM-RWG," 2017 International Symposium on Antennas and Propagation (ISAP), 1-2, IEEE, Oct. 2017, doi: 10.1109/isanp.2017.8228998. Google Scholar
32. Bitchikh, M. and F. Ghanem, "A four bandwidth-resolution UWB antipodal vivaldi antenna," Progress In Electromagnetics Research M, Vol. 53, 121-129, 2017. Google Scholar
33. Genovesi, S., F. Costa, and A. Monorchio, "Wideband radar cross section reduction of slot antennas arrays," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 163-173, Jan. 2014, doi: 10.1109/tap.2013.2287888. Google Scholar
34. ANSYS "HFSS --- High frequency electromagnetic simulation software,", https://www.ansys.com/products/electronics/ansys-hfss, 2022, accessed: Aug. 12, 2022. Google Scholar
35. Hansen, R., "Relationships between antennas as scatterers and as radiators," Proceedings of the IEEE, Vol. 77, No. 5, 659-662, May 1989, doi: 10.1109/5.32056. Google Scholar
36. Agastra, E., G. Pelosi, S. Selleri, and R. Taddei, "Multiobjective optimization techniques," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-29, John Wiley & Sons, Inc., Sep. 2014, ISBN 9780471346081, doi: 10.1002/047134608x.w8226. Google Scholar