Vol. 124
Latest Volume
All Volumes
PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-11
A Novel Method for Rapidly Solving Wideband RCS by Combining UCBFM and Compressive Sensing
By
Progress In Electromagnetics Research C, Vol. 124, 33-42, 2022
Abstract
While analyzing wideband electromagnetic scattering problems using ultra-wideband characteristic basis function method (UCBFM), the reconstruction of a reduced matrix and the recalculation of an impedance matrix at each frequency point cost a large amount of time. To overcome this issue, a novel method that combines UCBFM with compressive sensing (CS) is proposed in this paper to rapidly analyse the wideband RCS. The proposed method makes the ultra-wide band characteristic basis functions (UCBFs) generated at the highest frequency as the sparse basis, introduces the CS theory, randomly extracts several rows from the original matrix as the measurement matrix, utilizes the corresponding excitation vector as the measurement value, and then employs the recovery algorithm, through which the solution of target induced current can be obtained. Due to partial filling of impedance matrix and efficient recovery algorithm, the wideband RCS computation time of the object is significantly reduced using the proposed method. Furthermore, the numerical simulation results show that the computation efficiency for the target wideband RCS can be further enhanced compared with that of the stand-alone UCBFM.
Citation
Zhonggen Wang, Chenwei Li, Yufa Sun, Wenyan Nie, Pan Wang, and Han Lin, "A Novel Method for Rapidly Solving Wideband RCS by Combining UCBFM and Compressive Sensing," Progress In Electromagnetics Research C, Vol. 124, 33-42, 2022.
doi:10.2528/PIERC22072102
References

1. Coifman, C. R. and V. Rokhlin, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas Propag. Mag., Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

2. Zhao, K., M. N. Vouvakis, and J. F. Lee, "The adaptive cross approximation algorithm for accelerated MoM computations of EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

3. Chen, X., C. Gu, Z. Niu, and Z. Li, "A hybrid fast dipole method and adaptive modified characteristic basis function method for electromagnetic scattering from perfect electric conducting targets," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14, 1940-1952, 2011.
doi:10.1163/156939311798072171

4. Shaeffer, J., "Direct solve of electrically large integral equations for problem sizes to 1M unknowns," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2306-2313, 2008.
doi:10.1109/TAP.2008.926739

5. Freni, A., P. De Vita, P. Pirinoli, L. Matekovits, and G. Vecchi, "Fast-factorization acceleration of MoM compressive domain-decomposition," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 12, 4588-4599, 2011.
doi:10.1109/TAP.2011.2165474

6. Lucente, E., A. Monorchio, and R. Mittra, "An iteration free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 4, 999-1007, 2008.
doi:10.1109/TAP.2008.919166

7. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: a new technique for efficient solution of method of moments matrix equations," Microwave and Optical Technology Letters, Vol. 36, No. 2, 95-100, 2003.
doi:10.1002/mop.10685

8. Hay, S. G., J. D. O'Sullivan, and R. Mittra, "Connected patch array analysis using the characteristic basis function method," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 6, 1828-1837, 2011.
doi:10.1109/TAP.2011.2123867

9. Burke, G. J., "Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Mag., Vol. 25, No. 4, 2807-2809, 1988.
doi:10.1109/20.34291

10. Newman, E. H., "Generation of wide band from the method of moments by interpolating the impedance matrix," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 12, 1820-1824, 1988.
doi:10.1109/8.14404

11. Reddy, C. J., M. D. Deshpande, and C. R. Cockrell, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic evaluation technique," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1229-1233, 1998.
doi:10.1109/8.718579

12. Degiorgi, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, No. 1, 60-66, 2012.
doi:10.1049/iet-map.2011.0309

13. Nie, W. Y. and Z. G. Wang, "Solution for wide band scattering problems by using the improved ultra-wide band characteristic basis function method," Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016.
doi:10.2528/PIERL15080801

14. Nie, W. Y. and Z. G. Wang, "Analysis of wide band scattering from objects using the adaptive improved ultra-wide band characteristic basis functions," Progress In Electromagnetics Research Letters, Vol. 60, 45-51, 2016.
doi:10.2528/PIERL16033003

15. Yao, A. M., W. Wu, J. Hu, and D. G. Fang, "Combination of ultra-wide band characteristic basis function method and improved adaptive model-based parameter estimation in MoM solution," 2013 Proceedings of the International Symposium on Antennas & Propagation, 55-58, 2013.

16. Yao, A. M., W. Wu, J. Hu, and D.-G. Fang, "Combination of ultra-wide band characteristic basis function method and asymptotic waveform evaluation method in mom solution," 2013 Proceedings of the International Symposium on Antennas & Propagation, 795-798, 2013.

17. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

18. Cao, X., M. Chen, X. Wu, M. Kong, J. Hu, and Y. Zhu, "Dual compressed sensing method for solving electromagnetic scattering problems by method of moments," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 267-270, 2018.
doi:10.1109/LAWP.2017.2785658

19. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

20. Miosso, C. J., R. von Borries, M. Argaez, L. Velazquez, C. Quintero, and C. M. Potes, "Compressive sensing reconstruction with prior information by iteratively reweighted least-squares," IEEE Transactions on Signal Processing, Vol. 57, No. 6, 2424-2431, 2009.
doi:10.1109/TSP.2009.2016889