Vol. 124
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-21
Adaptive Beamforming Algorithm Based on MVDR for Smart Linear Dipole Array with Known Mutual Coupling
By
Progress In Electromagnetics Research C, Vol. 124, 125-134, 2022
Abstract
In this paper, minimum variance distortionless response (MVDR) algorithm for adaptive Beamforming is applied to a linear array under known mutual coupling among half wavelength dipole (HWD) antennas. This algorithm will minimize the signals from all interference directions while keeping the desired signal undistorted. The problem of calculating mutual coupling coefficient of the array HWD antennas formed into a matrix has been considered. The obtained results show the effectiveness of the proposed method, in which the optimum weighting of adaptive antenna arrays is accomplished by computing the weight vector that achieves maximum towards the desired signal and nulls towards interferers. Also, performance evaluation of this algorithm in terms of complexity, convergence speed, and amplitude response will be present. It is shown from the simulation results that the performance of the beamforming algorithm considering the mutual coupling effect can be improved by the proposed compensation method. We also simulate the signal-to-interference-plus-noise ratio (SINR) with different input signal-to-interference ratio (SIR). The different results obtained are in good agreement with those of the literature.
Citation
Noureddine Boughaba, Chouaib Chettah, and Ouarda Barkat, "Adaptive Beamforming Algorithm Based on MVDR for Smart Linear Dipole Array with Known Mutual Coupling," Progress In Electromagnetics Research C, Vol. 124, 125-134, 2022.
doi:10.2528/PIERC22080103
References

1. Guo, Y. J. and W. Ziolkowsk, Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications, John Wiley, New Jersey, 2022.

2. Godara, L. C., Handbook of Antennas in Wireless Communications, 1st Ed., CRC Press, 2002.

3. Ma, Y., J. Wang, M. Chen, Z. Li, and Z. Zhang, "Smart antenna with automatic beam switching for mobile communication," EURASIP Journal on Wireless Communications and Networking, Vol. 179, 1-19, 2020.

4. Gross, F., Smart Antenna for Wireless Communication, McGraw-Hill, New York, 2005.

5. Yang, B., W. Li, Y. Li, and C. Yue, "Novel robust adaptive beamforming against unknown mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 18, 2447-2467, 2021.
doi:10.1080/09205071.2021.1952656

6. Bensalem, M. and O. Barkat, "DOA estimation of linear dipole array with known mutual coupling based on ESPRIT and MUSIC," Radio Science, Vol. 57, No. 2, 1-15, 2022.
doi:10.1029/2021RS007294

7. Kelley, D. F. and W. L. Stutzman, "Array antenna pattern modelling methods that include mutual coupling effects," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 12, 1625-1632, 1993.
doi:10.1109/8.273305

8. Gupta, I. and A. Ksienski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, 1983.
doi:10.1109/TAP.1983.1143128

9. Wallace, J. W. and M. A. Jensen, "Mutual coupling in MIMO wireless systems: A rigorous network theory analysis," IEEE Transactions on Wireless Communications, Vol. 4, No. 4, 1317-1325, 2004.
doi:10.1109/TWC.2004.830854

10. Dandekar, K. R., H. Ling, and G. Xu, "Experimental study of mutual coupling compensation in smart antenna applications," IEEE Transactions on Wireless Communications, Vol. 1, No. 3, 480-487, 2002.
doi:10.1109/TWC.2002.800546

11. Lee, J.-H. and Y. L. Chen, "Performance analysis of antenna array beamformers with mutual coupling effects," Progress In Electromagnetics Research B, Vol. 33, 291-215, 2011.
doi:10.2528/PIERB11052802

12. Selvaraju, R., M. H. Jamaluddin, M. R. Kamarudin, J. Nasir, and M. H. Dah, "Mutual coupling reduction and pattern error correction in a 5G beamforming linear array using CSRR," IEEE Access, Vol. 6, No. 6, 65922-65934, 2018.
doi:10.1109/ACCESS.2018.2873062

13. Huang, Q., H. Zhou, J. Bao, and X. Shi, "Calibration of mutual coupling effect for adaptive arrays composed of circularly polarized microstrip antennas," Electromagnetics, Vol. 34, 392-401, 2014.
doi:10.1080/02726343.2014.910371

14. Craeye, C. and D. González-Ovejero, "A review on array mutual coupling analysis," Radio Science, Vol. 46, No. 2, 22-25, 2011.
doi:10.1029/2010RS004518

15. Clerckx, B., C. Craeye, D. Vanhoenacker, and C. Oestges, "Impact of antenna coupling on 2 × 2 MIMO communications," IEEE Transactions on Vehicular Technology, Vol. 56, No. 3, 1009-1018, 2007.
doi:10.1109/TVT.2007.895545

16. Lau, C. E., R. S. Adve, and T. K. Sarkar, "Minimum norm mutual coupling compensation with applications in direction of arrival estimation," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 8, 2034-2041, 2004.
doi:10.1109/TAP.2004.832511

17. Friedlander, B. and A. J. Weiss, "Direction finding in the presence of mutual coupling," IEEE Transactions on Antennas and Propagation, Vol. 39, 277-284, 1991.

18. Widrow, B. and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs, Prentice-Hall, 1985.

19. Higuchi, T., N. Ito, S. Araki, T. Yoshioka, M. Delcroix, and T. Nakatani, "Online MVDR beamformer based on complex Gaussian mixture model with spatial prior for noise robust ASR," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 25, No. 4, 780-793, 2017.
doi:10.1109/TASLP.2017.2665341

20. Kubo, Y., T. Nakatani, M. Delcroix, K. Kinoshita, and S. Araki, "Mask-based MVDR beamformer for noisy multisource environments: Introduction of time-varying spatial covariance model," 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2019), 6855-6859, 2019.
doi:10.1109/ICASSP.2019.8683092

21. Shahab, S. N., A. R. Zainun, N. H. Noordin, and A. J. Mohamad, "Performance analysis of smart antenna based on MVDR beamformer using rectangular antenna array," ARPN Journal of Engineering and Applied Sciences, Vol. 10, No. 22, 17132-17138, 2015.

22. Capon, J., "High-resolution frequency-wavenumber spectrum analysis," Proc. IEEE, Vol. 57, No. 8, 1408-1418, 1987.
doi:10.1109/PROC.1969.7278

23. Ali, R., T. V. Waterschoot, and M. Moonen, "An integrated MVDR beamformer for speech enhancement using a local microphone array and external microphones," EURASIP J. Audio Speech Music Process, Vol. 10, 1-20, 2021.

24. Higuchi, T., N. Ito, S. Araki, T. Yoshioka, M. Delcroix, and T. Nakatani, "Online MVDR beamformer based on complex Gaussian mixture model with spatial prior for noise robust ASR," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 25, No. 4, 780-793, 2017.
doi:10.1109/TASLP.2017.2665341

25. Wang, B., F. Chen, and H. Ge, "Subspace projection semi-real-valued MVDR algorithm based on vector sensors array processing," Neural Computing and Applications, Vol. 32, 173-181, 2020.
doi:10.1007/s00521-018-3791-8

26. Barkat, O., "Modeling and optimization of radiation characteristics of triangular superconducting microstrip antenna array," Computational Electronics, Vol. 13, 657-665, 2014.
doi:10.1007/s10825-014-0584-x

27. Barkat, O. and A. Benghalia, "Radiation pattern synthesis for linear arrays of microstrip antennas on uniaxially anistropic substrate," IEEE International Conference on Computational Cybernetics, 209-213, 2007.
doi:10.1109/ICCCYB.2007.4402036

28. Veerendra, D. and A. Mukil, "Adaptive Beamformers for high speed mobile communication," Wireless Personal Communications, Vol. 113, 1691-1707, 2020.
doi:10.1007/s11277-020-07287-1