Vol. 124
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-09-21
Isolation Analysis of Miniaturized Metamaterial-Based MIMO Antenna for X-Band Radar Applications Using Machine Learning Model
By
Progress In Electromagnetics Research C, Vol. 124, 135-153, 2022
Abstract
A novel metamaterial-based circular patch multi-input multi-output (MIMO) antenna is designed with a `C'-shaped defected ground structure for high isolation. A 4 × 4 mm2 unit cell for a ring resonator has been designed and exhibited double negative material (DNG) properties from 1.0 to 2.92 GHz and 13.68 to 17.67 GHz and Mu negative material (MNG) from 4.70 to 13.67 GHz. The proposed antenna structure is designed by embedding the ring resonator-based meta-structure to a circular patch antenna and fabricated with dimensions 0.245λ0×0.409λ0 (15×25 mm2). The proposed antenna operating at 8.50 to 14.23 GHz for X and lower Ku bands is used in the Unmanned Arial Vehicle (UAV's) applications. The spacing between elements is 0.088λ0 (5.4 mm) on an FR4 epoxy substrate, and the `C'-shaped structure on the back of the antenna improves the isolation of more than 24 dB in the operating band. Distance between the antenna elements plays a crucial role, and parameters affected by this are optimized by introducing machine learning. For future predictions, a linear regression model was created to optimize the parameters' linear dependencies like isolation and return loss on the distance between the antenna elements. The radiation efficiency and gain of the antenna are enhanced by 92% and 6.02 dB at 13.22 GHz, respectively. The MIMO antenna's simulated results of diversity and other parameters are in the acceptable range with the measured results used for X-band radar applications. The proposed decoupling technique is simple to understand and implement.
Citation
Jyothsna Undrakonda, and Ratna Kumari Upadhyayula, "Isolation Analysis of Miniaturized Metamaterial-Based MIMO Antenna for X-Band Radar Applications Using Machine Learning Model," Progress In Electromagnetics Research C, Vol. 124, 135-153, 2022.
doi:10.2528/PIERC22080203
References

1. Liu, Y., G. Xu, and X. Xu, "MIMO radar calibration and imagery for near-field scattering diagnosis," IEEE Trans. Aerosp. Electron. Syst., Vol. 54, No. 1, 442-452, 2018.        Google Scholar

2. Yegulalp, A. F., K. W. Forsythe, A. O. Hero, and D. W. Bliss, "Environmental issues for MIMO capacity," IEEE Trans. Signal Process., Vol. 50, No. 9, 2128-2142, 2002.        Google Scholar

3. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Process. Mag., Vol. 24, No. 5, 106-114, Oct. 2007.        Google Scholar

4. Yang, X., T. Zeng, C. Mao, C. Hu, and W. Tian, "Multi-static MIMO SAR three-dimensional deformation measurement system," Proc. IEEE 5th Asia-Pacific Conf. Synth. Aperture Radar (APSAR), Vol. 1, 297-301, Singapore, 2015.        Google Scholar

5. Haimovich, A. M., R. S. Blum, and L. J. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, No. 1, 116-129, 2008.        Google Scholar

6. Fishler, E., A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, "MIMO radar: An idea whose time has come," Proc. the IEEE Radar, 71-78, 2004.        Google Scholar

7. Jayanthi, K. and A. M. Kalpana, "Mutual coupling reduction techniques between MIMO antennas for UWB applications," International Journal on Recent and Innovation Trends in Computing and Communication, Vol. 5, No. 9, 18-22, 2017.        Google Scholar

8. Shabbir, T., M. T. Islam, S. S. Al-bawri, R. W. aldhaheri, K. H. Alharbi, et al. "16-port non-planar MIMO antenna system with nzi metamaterial decoupling structure for 5G applications," IEEE Access, Vol. 8, 157946-157958, 2020.        Google Scholar

9. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, et al. "Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems," Radio Science, Vol. 54, No. 11, 1067-1075, Nov. 2019, https://doi.org/10.1029/2019RS006871.        Google Scholar

10. Mchbal, A., N. Amar Touhami, H. Elftouh, and A. Dkiouak, "Mutual coupling reduction using a protruded ground branch structure in a compact UWB Owl-shaped MIMO antenna," International Journal of Ants. and Prop., Vol. 10, Article ID 4598527, 2018.        Google Scholar

11. Wang, F., Z. Y. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimetre-wave wideband MIMO antenna for 5G communication," International Journal of Ants. and Prop., 1-12, 2019.        Google Scholar

12. Kong, L. and X. Xu, "A compact dual-band dual-polarized microstrip antenna array for MIMO-SAR applications," IEEE Trans. on Antennas and Prop., Vol. 66, No. 5, 2374-2381, 2018.        Google Scholar

13. Feng, B., J. Lai, K. Chung, and Q. Zeng, "Dual-wideband and high-gain ME dipole antenna and its 3-D MIMO system with metasurface," IEEE Access, Vol. 6, 33387-33398, 2018.        Google Scholar

14. Chen, Z., W. Zhou, and J. Hong, "Miniaturized MIMO antenna with triple band-notched characteristics for UWB applications," IEEE Access, Vol. 9, 63646-63655, 2021.        Google Scholar

15. Al-bawri, S. S., M. T. Islam, G. Muhammad, M. D. Shabiul Islam, and H. Y. Wong, "Hexagonal shaped NZI MTM based MIMO antenna for mm-Wave application," IEEE Access, Vol. 8, 181003-181013, 2020.        Google Scholar

16. Amin, F., R. Saleem, S. Ur Rehman, M. Bilal, M. F. Shafique, and T. Shabbir, "A compact quad-element UWB-MIMO antenna system with parasitic decoupling mechanism," Appl. Sci., Vol. 9, 1-13, 2019.        Google Scholar

17. Yin, C., Z. Li, and X. Zhu, "Compact UWB MIMO vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.        Google Scholar

18. Xi, Z., Z. Tang, X. Wu, J. Znan, S. Hu, and Y. L. Xin, "Compact UWB-MIMO antenna with high isolation and triple band-notched characteristics," IEEE Access, Vol. 7, 19856-19865, 2019.        Google Scholar

19. Kumar, P., S. Urooj, and A. Malibari, "Design and implementation of quad-element SWB MIMO antenna for IoT applications," IEEE Access, Vol. 8, 697-704, 2020.        Google Scholar

20. Shabbir, T., R. Saleem, S. S. Al-Bawri, M. F. Shafique, and M. T. Islam, "Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications," IEEE Access, Vol. 8, 106982-106992, 2020.        Google Scholar

21. Iqbal, A., A. Basir, A. Smida, N. K. Mallat, I. Elfergani, et al. "Electromagnetic bandgap backed mm-Wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.        Google Scholar

22. Molins-Benlliure, J., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Baller, "Four-port wide-band cavity-backed antenna with isolating X-shaped block," IEEE Access, Vol. 9, 80535-80545, 2021.        Google Scholar

23. Jaglan, N., D. Kumar, S. D. Gupta, T. Ekta, B. K. Kanaujia, and S. Shweta, "Triple band notched mushroom and uniplanar EBG structures based UWB MIMO/diversity antenna with enhanced wideband isolation," International Journal of Elens. and Coms., Vol. 90, 36-44, 2018.        Google Scholar

24. Khan, A., S. Bashir, G. Salman, and K. Qureshi, "Mutual coupling reduction using ground stub and EBG in compact wideband MIMO-antenna," IEEE Access, Vol. 9, 40972-40979, 2021.        Google Scholar

25. Alibakhshikenari, M., M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, and E. Limiti, "Mutual coupling suppression between two closely placed microstrip patches," IEEE Access, Vol. 7, 23606-23614, 2019.        Google Scholar

26. Elsharkawy, R. R., A. S. A. El-Hameed, and S. M. El-Nady, "Quad-port MIMO filtenna with high isolation employing BPF with high out-of-band rejection," IEEE Access, Vol. 10, 3814-3824, 2022.        Google Scholar

27. Al-Bawri, S. S., Md S. Islam, H. Y. Wong, M. F. Jamlos, A. Narbudowicz, M. Jusoh, T. Sabapathy, et al. "Metamaterial cell-based superstrate towards bandwidth and gain enhancement of quad-band CPW-Fed antenna for wireless applications," Sensors, Vol. 20, 1-14, 2020.        Google Scholar

28. Al-Bawri, S. S., H. H. Goh, Md S. Islam, H. Y. Wong, M. F. Jamlos, A. Narbudowicz, M. Jusoh, et al. "Compact ultra-wideband monopole antenna loaded with metamaterial," Sensors, Vol. 20, 1-15, 2020.        Google Scholar

29. Arpan, D., P. Merch, K. Jayshri, G. Byun, and T. K. Nguyen, "Wideband flexible/transparent connected-ground MIMO antennas," IEEE Access, Vol. 9, 147003-147015, 2021.        Google Scholar

30. Alibakhshikenari, M., F. Babaeian, B. S. Virdee, S. Aïssa, L. Azpilicueta, et al. "A comprehensive survey on ``Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems"," IEEE Access, Vol. 8, 192965-193004, 2020.        Google Scholar

31. Ayman, A. A., "Low-interacted multiple antenna systems based on metasurface-inspired isolation approach for MIMO applications," Arab. J. Sci. Eng., Vol. 47, 2629-2638, 2022.        Google Scholar

32. Alibakhshikenar, M., B. S. Virdee, P. Shukla, C, H. See, R, A. Abd-Alhameed, et al. "Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems," IET Microwaves, Antennas & Propagation, Vol. 14, No. 3, 183-188, 2020.        Google Scholar

33. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "Array antenna for synthetic aperture radar operating in X and Ku-bands: A study to enhance isolation between radiation elements," EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, 1083-1087, 2018.        Google Scholar

34. Alibakhshikenar, M., B. S. Virdee, P. Shukla, C. H. See, R. Abd-Alhameed, M. Khalily, et al. "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 198, 2018.        Google Scholar

35. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars," Radio Science, Vol. 53, 1368-1381, 2018.        Google Scholar

36. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "A new study to suppress mutual-coupling between waveguide slot array antennas based on metasurface bulkhead for MIMO systems," Proceedings of the 2018 Asia-Pacific Microwave Conf. (APMC), 500-502, 2018.        Google Scholar

37. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, "A new waveguide slot array antenna with high isolation and high antenna bandwidth operation on Ku- and K-bands for radar and MIMO systems," Proceedings of the 48th European Microwave Conf. (EuMC), 1421-1424, 2018.        Google Scholar

38. Alibakhshikenar, M., B. S. Virdee, C. H. See, R. Abd-Alhameed, and F. Falcone, et al., "Study on antenna mutual coupling suppression using integrated metasurface isolator for SAR and MIMO applications," Proceedings of the 48th European Microwave Conf. (EuMC), 1425-1428, 2018.        Google Scholar

39. Alibakhshikenar, M., M. Khalily, and B. S. Virdee, et al., "Mutual-coupling isolation using embedded metamaterial em bandgap decoupling slab for densely packed array antennas," IEEE Access, Vol. 7, 5182-51840, 2019.        Google Scholar

40. Alibakhshikenar, M., M. Khalily, and B. S. Virdee, et al., "Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading," IEEE Access, Vol. 7, 23606-23614, 2019.        Google Scholar

41. Alibakhshikenar, M., B. S. Virdee, and E. Limiti, "A technique to suppress mutual coupling in densely packed antenna arrays using metamaterial supersubstrate," 12th European Conference on Antennas and Propagation, 9-13, 2018.        Google Scholar

42. Sunita, A. N. and B. Gauraw, "Design of squared shape SRR metamaterial by using rectangular microstrip patch antenna at 2.85 GHz," 4th International Conference on Signal Proc. and Integrated Ntrks (SPIN), 196-200, IEEE, 2017.        Google Scholar

43. Kiruthika, R. and T. Shanmuganantham, "Comparison of different shapes in microstrip patch antenna for X-band applications," International Conference on Emerging Technological Trends (ICETT), 1-6, Oct. 2016.        Google Scholar

44. Khan, S. and T. F. Eibert, "A multifunctional metamaterial-based dual-band isotropic frequency-selective surface," IEEE Trans. on Antennas and Prop., Vol. 66, No. 8, 4042-4051, 2018.        Google Scholar

45. Saharawi, M. S., A. T. Hassan, and M. U. khan, "Correlation coefficient calculations for MIMO antenna systems: A comparative study," International Journal of Microw. and Wireless Tech., 1-14, 2017.        Google Scholar