Vol. 126
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-17
A T-Shaped Polyomino Subarray Design Method for Controlling Sidelobe Level
By
Progress In Electromagnetics Research C, Vol. 126, 243-251, 2022
Abstract
Partitioning large planar antenna arrays into smaller subarrays reduces the system costs and gives many other advantages. In this article, symmetrical T-shaped tetromino subarrays are suggested to perform the partition process of the large planar arrays. Different structures of T-shaped tetromino subarrays have been obtained by simply rotating its orientation by multiple angles of 90 degrees such that the entire planar array aperture can be filled. Two array architectures based on different T-shaped tetrominoes are constructed. The amplitude weights of the designed subarrays are optimized by means of the genetic algorithm such that the resulting array patterns have low sidelobe level. In the first architecture, all the elements in the original array are divided into several subarrays based on three T-shape structures, while in the second architecture all the elements are combined into eight different T-shapes. To control the sidelobe level in the proposed T-shaped tetromino subarrays, a surface mask boundary function is included in the optimization process to find the optimum weights of the T-shaped subarrays. Simulation results showed that the sidelobes can be reduced to less than -20 dB in the first architecture, and less than -25 dB in the second architecture, in addition to a significant reduction in the complexity of the feeding network for each one. Moreover, detailed connections of the feeding network circuitry of the used T-shaped tetromino subarray structures are given for practical implementation.
Citation
Ahmed Jameel Abdulqader Jafar Ramadhan Mohammed Yaser Ahmed Ali , "A T-Shaped Polyomino Subarray Design Method for Controlling Sidelobe Level," Progress In Electromagnetics Research C, Vol. 126, 243-251, 2022.
doi:10.2528/PIERC22080803
http://www.jpier.org/PIERC/pier.php?paper=22080803
References

1. Sayidmarie, K. and J. R. Mohammed, "Performance of a wide angle and wide band nulling method for phased arrays," Progress In Electromagnetics Research M, Vol. 33, 239-249, 2013.
doi:10.2528/PIERM13100603

2. Sarkar, T. K. and R. J. Mailloux, A History of Phased Array Antennas, in History of Wireless, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2006.

3. Mohammed, J. R., "Synthesizing sum and difference patterns with low complexity feeding network by sharing element excitations," International Journal of Antennas and Propagation, Vol. Article ID 2563901, 7 pages, 2017, 2017.

4. Nickel, U. R., "Properties of digital beamforming with subarrays," IEEE Aerosp. Electron. Syst. Mag., Vol. 20, 46, 2006.

5. Ahmed, J. A., R. M. Jafar, and H. T. Raad, "Unconventional and irregular clustered arrays," 1st International Ninevah Conference on Engineering and Technology (INCET2021), Vol. 1152, 012003, IOP publisher, 2021.

6. Jeong, T., J. Yun, K. Oh, J. Kim, D. W. Woo, and K. C. Hwang, "Shape and weighting optimization of a subarray for an mm-Wave phased array antenna," Appl. Sci., Vol. 11, 2021.
doi:10.3390/app112412003

7. Mohammed, J. R., "Minimizing grating lobes in large arrays using clustered amplitude tapers," Progress In Electromagnetics Research C, Vol. 120, 93-103, 2022.
doi:10.2528/PIERC22031706

8. Mailloux, R. J., "A low-sidelobe partially overlapped constrained feed network for time-delayed subarrays," IEEE Trans. Antennas Propag., Vol. 49, 280-291, 2001.
doi:10.1109/8.914295

9. Haupt, R. L., "Optimized weighting of uniform subarrays of unequal sizes," IEEE Trans. Antennas Propag., Vol. 53, 1207-1210, 2007.
doi:10.1109/TAP.2007.893406

10. Lee, H., S. Boo, G. Kim, and B. Lee, "Optimization of excitation magnitudes and phases for maximum efficiencies in a MISO wireless power transfer system," J. Electromagn. Eng. Sci., Vol. 20, 16-22, 2020.
doi:10.26866/jees.2020.20.1.16

11. Manica, L., P. Rocca, and A. Massa, "Design of subarrayed linear and planar array antennas with SLL control based on an excitation matching approach," IEEE Trans. Antennas Propag., Vol. 57, 1684-1691, 2009.
doi:10.1109/TAP.2009.2019914

12. Xiong, Z. Y., Z. H. Xu, S. W. Chen, and S. P. Xiao, "Subarray partition in array antenna based on the algorithm X," IEEE Antennas Wireless Propag. Lett., Vol. 12, 906-909, 2013.
doi:10.1109/LAWP.2013.2272793

13. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
doi:10.2528/PIERM20042307

14. Mohammed, J. R. and K. H. Sayidmarie, "Synthesizing asymmetric sidelobe pattern with steered nulling in non-uniformly excited linear arrays by controlling edge elements," International Journal of Antennas and Propagation, Vol. 2017, Article ID 9293031, 8 pages, 2017.

15. Mohammed, J. R. and K. H. Sayidmarie, "Sidelobe cancellation for uniformly excited planar array antennas by controlling the side elements," IEEE Antennas Wireless Propag. Lett., Vol. 13, 987-990, 2014.
doi:10.1109/LAWP.2014.2325025

16. Mohammed, J. R., A. J. Abdulqader, and R. H. Thaher, "Array pattern recovery under amplitude excitation errors using clustered elements," Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020.
doi:10.2528/PIERM20101906

17. Raad, H. T., R. M. Jafar, and J. A. Ahmed, "Array radiation pattern recovery under random errors using clustered linear array," Journal of Engineering and Sustainable Development, 2021.

18. Yang, K., Y. Wang, and H. Tang, "A subarray design method for low sidelobe levels," Progress In Electromagnetics Research Letters, Vol. 89, 45-51, 2020.
doi:10.2528/PIERL19110301

19. Mailloux, R. J., S. G. Santarelli, D. L. Roberts, and D. Luu, "Irregular polyomino-shaped subarrays for space-based active arrays," International Journal of Antennas and Propagation, Vol. 2009, Article ID 956524, 9 pages, 2009.