Vol. 127
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-12-05
Microwave Imaging of Small Scatterers by MUSIC Algorithm Using a Novel Source Number Detection Method
By
Progress In Electromagnetics Research C, Vol. 127, 145-156, 2022
Abstract
Microwave imaging of small scatterers is an inverse scattering problem, and recently, the MUSIC algorithm has been proposed to solve this type of problem. The MUSIC algorithm, by assuming that the number of targets is a priori known, can locate the scatterers from the peaks of the well-known pseudospectrum. The noise and multiple scattering create ambiguity to detect the number of targets. Usually, information-based algorithms such as Akaike information criterion (AIC) and minimum description length (MDL) are employed for source number estimation. However, in the cases of low signal-to-noise ratio (SNR) and close targets, the performance of these methods is seriously degraded. In the present work, we propose a two-step approach to enumerate the scatterers in microwave imaging applications for cases where traditional methods fail. Firstly, the MUSIC algorithm is applied to locate all possible targets by assuming the maximum number of targets, and secondly, we can discriminate between the real and unreal targets by using a novel formula that acts as a spatial filter. The efficiency of the proposed method has been examined through various simulation tests using numerical and experimental datasets, and the results verify that the method can accurately specify the location and the number of scatterers in 2D microwave imaging applications.
Citation
Roohallah Fazli Hajar Momeni , "Microwave Imaging of Small Scatterers by MUSIC Algorithm Using a Novel Source Number Detection Method," Progress In Electromagnetics Research C, Vol. 127, 145-156, 2022.
doi:10.2528/PIERC22102202
http://www.jpier.org/PIERC/pier.php?paper=22102202
References

1. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "Aclinical prototype for active microwave imaging of the breast," IEEE Trans. Microwave Theory and Techniques, Vol. 48, No. 10, 1841-1853, 2000.

2. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12-18, 2003.
doi:10.1109/MP.2003.1180933

3. Liu, H. and J. Zou, "Uniqueness in an inverse acoustic obstacle scattering problem for both sound- hard and sound-soft polyhedral scatterers," Inverse Prob., Vol. 22, No. 2, 515-524, 2006.
doi:10.1088/0266-5611/22/2/008

4., Liu and H., "On local and global structures of transmission eigenfunctions and beyond," J. Inverse Ill-Posed Prob., Vol. 30, No. 2, 287-305, 2020.
doi:10.1515/jiip-2020-0099

5. Li, J., H. Liu, Z. Shang, and H. Sun, "Two single-shot methods for locating multiple electromagnetic scatterers," SIAM J. Appl. Math., Vol. 73, No. 4, 1721-1746, 2013.
doi:10.1137/130907690

6. Fink, M., J. L. Thomas, and P. Roux, "Inverse scattering analysis with an acoustic time-reversal mirror," Phys. Rev. Lett., 637-640, 1994.

7. Lee, K. J., S. H. Son, and W. K. Park, "A real-time microwave imaging of unknown anomaly with and without diagonal elements of the scattering matrix," Results in Physics, Vol. 17, 103030, 2020.

8. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434

9. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402

10. Pouramadi, M., M. Nakhkash, and A. A. Tadion, "Application of MDL criterion for microwave imaging by MUSIC algorithm," Progress In Electromagnetics Research B, Vol. 40, 261-278, 2012.
doi:10.2528/PIERB12031001

11. Fazli, R., H. Owlia, and M. Pourahmadi, "Improved enumeration of scatterers using multifrequency data fusion in MDL for microwave imaging applications," Progress In Electromagnetics Research C, Vol. 107, 65-79, 2020.

12. Alkhodari, M., A. Zakaria, and N. Qaddoumi, "Using prior information to enhance microwave tomography images in bone health assessment," Bio Medical Eng., Vol. 21, No. 7, 1-22, 2022.

13. Hosseinzadegan, S., Fast microwave tomography algorithm for breast cancer imaging, Ph.D. dissertation, Dep. Electrical Eng., Chalmers Univ., 2021.

14. He, Z., A. Cichocki, S. Xie, and K. Choi, "Detection the number of clusters in N-way probabilistic clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 10, 2006-2021, 2010.

15. Liavas, A. P. and P. A. Regalia, "On the behavior of information theoretic criteria for model order selection," IEEE Transactions on Signal Process., Vol. 49, No. 7, 1689-1695, 2001.
doi:10.1109/78.934138

16. Gavish, M. and D. L. Donoho, "The optimal hard threshold for singular values is 4/p3," IEEE Trans. on Information Theory, Vol. 60, No. 7, 5040-5053, 2014.
doi:10.1109/TIT.2014.2323359

17. Solimene, R., A. Dell'Aversano, and G. Leone, "Interferometric time reversal MUSIC for small scatterer localization," Progress In Electromagnetics Research, Vol. 131, 243-258, 2012.
doi:10.2528/PIER12062103

18. Dell'Aversano, A., A. Natale, A. Buonanno, and R. Solimene, "Through the wall breathing detection by means of a doppler radar and MUSIC algorithm," IEEE Sensors Letters, Vol. 1, No. 3, 1-4, 2017.
doi:10.1109/LSENS.2017.2704902

19. Devaney, A. J., E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am., Vol. 118, No. 5, 3129-3138, 2005.
doi:10.1121/1.2042987

20. Marengo, E. A., "Single-snapshot signal subspace methods for active target location: Part I. Multiple scattering case," IASTED Int. Conf., 2161-2166, 2005.

21. Wax, M. and I. Ziskind, "Detection of the number of coherent signals by the MDL principle," IEEE Trans. Acoust. Speech Signal Process., Vol. 37, No. 7, 1190-1196, 1989.
doi:10.1109/29.31267

22. Fazli, R. and M. Nakhkash, "An analytical approach to estimate the number of small scatterers in 2D inverse scattering problems," Inverse Probl., Vol. 28, No. 6, 075012, 2012.
doi:10.1088/0266-5611/28/7/075012

23. Li, J., H. Liu, and J. Zou, "Strengthened linear sampling method with a reference ball," SIAM J. Sci. Comput., Vol. 31, No. 5, 4013-4040, 2009.
doi:10.1137/080732389

24. Belkebir, K. and M. Saillard, "Testing inversion algorithms against experimental data," Inverse Probl., Vol. 17, No. 5, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301

25. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. Lovetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Trans. Biomedical Eng., Vol. 57, No. 4, 894-904, 2010.
doi:10.1109/TBME.2009.2036372

26. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non- measurable equivalent currents for the imaging of dielectric objects," Inverse Probl., Vol. 25, No. 5, 055004, 2009.
doi:10.1088/0266-5611/25/5/055004

27. Zheng, H., M.-Z. Wang, Z. Zhao, and L. Li, "A novel linear EM reconstruction algorithm with phaseless data," Progress In Electromagnetics Research Letters, Vol. 14, 133-146, 2010.
doi:10.2528/PIERL10031306

28. Solimene, R., G. Leone, and A. Dell'Aversano, "MUSIC algorithms for rebar detection," Journal of Geophysics and Engineering, Vol. 10, No. 6, 064006, 2012.
doi:10.1088/1742-2132/10/6/064006