Vol. 114
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-12-29
Compact Planar Electromagnetic Bandgap Structure for Signal and Power Integrity Improvement in High-Speed Circuits
By
Progress In Electromagnetics Research M, Vol. 114, 233-243, 2022
Abstract
This paper introduces and validates a compact two-dimensional Electromagnetic Bandgap (EBG) structure for the improvement of signal integrity (SI) and power integrity(PI) by suppressing Simultaneous Switching Noise (SSN). SSN bandwidth can be increased by using the proposed T bridge compact planar structure. The proposed structure is simulated using Ansys HFSS Software. Simulated and measured results by Vector Network Analyzer provide 3.13 GHz to 11.40 GHz frequency bandgap with good mitigation of SSN at -30 dB noise suppression reference. It will almost cover S, C, and X bands from electromagnetic frequency spectrum. This will be useful for satellite and terrestrial communication and radar communication applications. The proposed structure analyzes signal integrity issues using eye diagram in MATLAB and power integrity in HFSS with input impedance respectively. The main purpose of this work is to provide a compact structure to improve signal and power integrity by the suppression of power/ground noise. Comparative study is also performed with the proposed structure and reference board with similar dimensions.
Citation
Manisha R. Bansode, and Surendra Singh Rathod, "Compact Planar Electromagnetic Bandgap Structure for Signal and Power Integrity Improvement in High-Speed Circuits," Progress In Electromagnetics Research M, Vol. 114, 233-243, 2022.
doi:10.2528/PIERM22102205
References

1. Abhari, R. and G. V. Eleftheriades, "Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of parallel-plate noise in high-speed circuits," IEEE Trans. Microwave Theory and Techniques, Vol. 51, No. 6, 1629-1639, Jun. 2003.
doi:10.1109/TMTT.2003.812555        Google Scholar

2. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopolous, and E. Eli Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory and Techniques, Vol. 47, 2059-2073, Nov. 1999.        Google Scholar

3. Huh, S. L. and M. Swaminathan, "A design technique for embedded electromagnetic band gap structure in load board applications," IEEE Trans. Electromagnetic Compatibility, Vol. 54, No. 2, 443-456, Apr. 2012.
doi:10.1109/TEMC.2011.2162337        Google Scholar

4. De Paulis, F., L. Raimondo, and A. Orlandi, "IR-drop analysis and thermal assessment of planar electromagnetic bandgap structures for power integrity applications," IEEE Trans. Adv. Packaging, Vol. 33, No. 3, 617-622, Aug. 2010.
doi:10.1109/TADVP.2009.2033572        Google Scholar

5. Zhu, H.-R., J.-F. Mao, and J.-J. Li, "Signal and power integrity analysis for the novel power plane of EBG structure in high-speed mixed signal systems," IEEE International Wireless Symposium (IWS), 1-4, Apr. 2013.        Google Scholar

6. Zhu, H.-R., Y.-F. Sun, Z.-X. Huang, and X.-L. Wu, "A compact EBG structure with etching spiral slots for ultra-wideband simultaneous switching noise mitigation in mixed signal systems," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, No. 8, 1559-1567, Aug. 2019.
doi:10.1109/TCPMT.2018.2888512        Google Scholar

7. Han, Y., H. A. Huynh, and S. Y. Kim, "Pinwheel meander-perforated plane structure for mitigating power/ground noise in system-in-package," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 8, No. 4, 562-569, Apr. 2018.
doi:10.1109/TCPMT.2018.2798580        Google Scholar

8. Wu, T. L., C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 174-176, Mar. 2005.
doi:10.1109/LMWC.2005.844216        Google Scholar

9. Kim, K. H. and J. E. Schutt-Ainé, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Trans. Microwave Theory and Techniques, Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199        Google Scholar

10. Shi, L.-F., Z.-M. Sun, G.-X. Liu, and S. Chen, "Hybrid-embedded EBG structure for ultrawideband suppression of SSN," IEEE Trans. Electromagnetic Compatibility, Vol. 60, No. 3, 747-753, Jun. 2018.
doi:10.1109/TEMC.2017.2743039        Google Scholar

11. Shi, L.-F. and H.-F. Jiang, "Vertical cascaded planar EBG structure for SSN suppression," Progress In Electromagnetics Research, Vol. 142, 423-435, 2013.
doi:10.2528/PIER13080107        Google Scholar

12. Shi, L.-F., K.-J. Li, H.-Q. Hu, and S. Chen, "Novel L-EBG embedded structure for the suppression of SSN," IEEE Trans. Electromagnetic Compatibility, Vol. 58, No. 1, 519-520, Feb. 2016.
doi:10.1109/TEMC.2015.2505736        Google Scholar

13. De Paulis, F., A. Orlandi, L. Raimondo, and G. Antonini, "Fundamental mechanisms of coupling between planar electromagnetic bandgap structures and interconnects in high-speed digital circuits. Part I --- Microstriplines," Proc. EMC European Workshop, 1-4, Athens, Greece, Jun. 11-12, 2009.        Google Scholar

14. Keshwani, V. R., P. P. Bhavarthe, and S. S. Rathod, "Eight shape Electromagnetic Band Gap structure for bandwidth improvement of wearable antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603        Google Scholar

15. Chung, D., T. H. Kim, C. Ryu, E. Engin, M. Swaminathan, and J. Kim, "Effect of EBG structures for reducing noise in multi-layer PCBs for digital systems," Proc. IEEE 15th Conf. Electr. Perform. Electron. Packag., 253-256, Oct. 23-25, 2006.        Google Scholar

16. Bansode, M. R., R. Dahatonde, and S. S. Rathod, "Simultaneous switching noise reduction in high speed circuits," IEEE International Conference on Communication information and Computing Technology (ICCICT), 1-4, Jun. 25-27, 2021.        Google Scholar

17. Kapure, V. R., P. P. Bhavarthe, and S. S. Rathod, "A switchable triple-band notched UWB antenna using compact multi-via electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 104, 201-214, 2020.
doi:10.2528/PIERC20052302        Google Scholar

18. Shahparnia, S. and O. M. Ramahi, "Miniaturized electromagnetic bandgap structures for broadband switching noise suppression in PCBs," Electron. Lett., Vol. 41, No. 9, 519-520, Apr. 2005.
doi:10.1049/el:20050445        Google Scholar

19. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Microwave and Wireless Components Letters, Vol. 67, 596-600, Oct. 2018.        Google Scholar

20. Mohajer-Iravaniand, B. and O. M. Ramahi, "Wideband circuit model for planar EBG structures," IEEE Trans. Adv. Packag., Vol. 33, No. 2, 1345-1354, May 2010.        Google Scholar

21. Shinde, S., M. Bansode, P. P. Bhavarthe, and S. S. Rathod, "Suppression of SSN in High-Speed Circuits using 1-D EBG structure," International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-4, Jul. 2020.        Google Scholar

22. Kim, T. H., D. Chung, E. Engin, W. Yun, Y. Toyota, and M. Swaminathan, "A novel synthesis method for designing electromagnetic bandgap (EBG) structures in packaged mixed signal systems," Proc. 56th Electron. Compon. Technol. Conf., 1645-1651, 2006.        Google Scholar

23. Wu, T. L., C. C. Wang, Y. H. Lin, T. K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 174-176, Mar. 2005.
doi:10.1109/LMWC.2005.844216        Google Scholar

24. Lu, H. M., J. X. Zha, and Z. Y. Yu, "Design and analysis of a novel electromagnetic bandgap structure for suppressing simultaneous switching noise," Progress In Electromagnetics Research C, Vol. 30, 81-91, 2012.
doi:10.2528/PIERC12042709        Google Scholar

25. Ning, C., J. Jin, K. Yang, H. Xie, D. W. Wang, Y. Liao, L. D. Wang, H. S. Chen, E. P. Li, and W.-Y. Yin, "A novel electromagnetic bandgap power plane etched with multiring csrrs for suppressing simultaneous switching noise," IEEE Trans. Electromagnetic Compatibility, Vol. 60, No. 3, 733-737, Jun. 2018.
doi:10.1109/TEMC.2017.2731783        Google Scholar

26. Choi, J., V. Govind, and M. Swaminathan, "A novel Electromagnetic Bandgap (EBG) structure for mixed-signal system applications," IEEE Radio and Wireless Conference, 243-246, 2004.        Google Scholar

27. De Paulis, F. and A. Orlandi, "Accurate and efficient analysis of planar electromagnetic band-gap structures for power bus noise mitigation in the GHz band," Progress In Electromagnetics Research B, Vol. 37, 59-80, 2012.
doi:10.2528/PIERB11100402        Google Scholar

28. High Frequency Structure Simlator, www.ansoft.com, .        Google Scholar

29. Kim, K. H. and J. E. Schutt-Aine, "Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications," IEEE Trans. Microwave Theory and Techniques, Vol. 56, No. 1, 178-186, Jan. 2008.
doi:10.1109/TMTT.2007.912199        Google Scholar

30. Swaminathan, M. and A. Ege Engin, Power Integrity Modeling and Design for Semiconductors and Systems, Prentice Hall, 2008.

31. Wu, T.-L., H.-H. Chuang, and T.-K. Wang, "Overview of power integrity solutions on package and PCB: Decoupling and EBG isolation," IEEE Trans. Electromagnetic Compatibility, Vol. 52, No. 2, 346-356, May 2010.
doi:10.1109/TEMC.2009.2039575        Google Scholar

32. Orlandi, A., B. Archambeault, F. de Paulis, and S. Connor, "Impact of planar EBGs on signal integrity in high-speed digital boards," IEEE Trans. Electromagnetic Compatibility, 61-76, 2017.        Google Scholar

33. Ning, A. C., J. Jin, K. Yang, H. Xie, D. W. Wang, Y. Liao, L. D. Wang, H. S. Chen, E. P. Li, and W.-Y. Yin, "A novel electromagnetic bandgap power plane etched with multi ring CSRRs for suppressing simultaneous switching noise," Proc. Asia-Pacific Symp. Electromagn. Compat., Singapore, 325-328, 2012.        Google Scholar

34. Han, Y., Z. Yan, Y. Wang, and T. Rahman, "A novel EBG structure with embedded meander bridge for broadband suppression of SSN," IEEE Trans. Electromagnetic Compatibility, Vol. 60, No. 3, 325-328, 2012.        Google Scholar

35. Mahmood, F. Z., Y. Toyota, K. Iokibe, K. Kondo, and S. Yoshida, "Power/ground layers with EBG structure and ferrite film for noise suppression and power integrity improvement," IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), 1-4, 2011.        Google Scholar