1. Politano, A., G. D. Profio, V. Sanna, and E. Curcio, "Thermoplasmonic membrane distillation," Chemical Engineering Transactions, Vol. 60, 301-306, 2017. Google Scholar
2. Santoro, S., A. H. Avci, A. Politano, and E. Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.
doi:10.1039/D0CS00097C Google Scholar
3. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming the temperature polarization in membrane distillation by thermoplasmonic effects activated in Ag nanofillers in polymeric membranes," Desalination, 192-199, 2019.
doi:10.1016/j.desal.2018.03.006 Google Scholar
4. Abramovich, S., D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. Boukhvalov, A. Agarwal, E. Curcio, M. B. Sadan, and A. Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2022.
doi:10.1002/smll.202201473 Google Scholar
5. Leonardo, V., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, 1-10, 2016. Google Scholar
6. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nanoletters, Vol. 16, No. 1, 80-87, 2016.
doi:10.1021/acs.nanolett.5b02901 Google Scholar
7. Politano, A., G. Chiarello, D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics Condensed Matter, Vol. 28, No. 36, 2016.
doi:10.1088/0953-8984/28/36/363003 Google Scholar
8. Adleman, J. R., D. A. Boyd, D. G. Goodwin, and D. Psaltis, "Heterogenous catalysis mediated by plasmon heating," Nano Letters, Vol. 9, No. 12, 4417-4423, 2009.
doi:10.1021/nl902711n Google Scholar
9. Liu, C., J. Lu, W. Liu, F. Wang, and P. K. Chu, "Overview of refractive index sensors comprising photonic crystal fibers based on the surface plasmon resonance effect," Chinese Optics Letters, Vol. 19, No. 10, 102202, 2021.
doi:10.3788/COL202119.102202 Google Scholar
10. Perri, C., F. Arcadio, G. D'Agostino, N. Cennamo, G. Porto, and L. Zeni, "Chemical and biological applications based on plasmonic optical fiber sensors," IEEE Instrumentation & Measurement Magazine, Vol. 24, No. 5, 50-55, 2021.
doi:10.1109/MIM.2021.9491004 Google Scholar
11. Chiarello, G., J. Hofmann, Z. Li, V. Fabio, L. Guo, X. Chen, S. D. Sarma, and A. Politano, "Tunable surface plasmons in Weyl semimetals TaAs and NbAs," Physical Review B, Vol. 99, 121401, 2019.
doi:10.1103/PhysRevB.99.121401 Google Scholar
12. Antonio, P., G. Chiarello, B. Ghosh, K. Sadhkhan, C.-N. Kuo, C. S. Lue, V. Pellegrini, and A. Agarwal, "3D Dirac plasmons in the type-II Dirac semimetal PtTe2," Physical Review Letters, Vol. 121, No. 8, 086804, 2018.
doi:10.1103/PhysRevLett.121.086804 Google Scholar
13. Krishanu, S., A. Politano, and A. Agarwal, "Novel undamped gapless plasmon mode in a tilted type-ll Dirac semimetal," Physical Review Letters, Vol. 124, No. 4, 2020. Google Scholar
14. Antonio, P., L. Viti, and M. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 2017. Google Scholar
15. Amit, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.
doi:10.1039/C8NR01395K Google Scholar
16. Antonio, P. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Applied Physics Letters, Vol. 102, No. 20, 2013. Google Scholar
17. Cupolillo, A., A. Politano, N. Ligato, D. M. CidPerez, G. Chiarello, and L. S. Caputi, "Substrate-dependent plasmonic properties of supported graphene," Surface Science, 76-80, 2015.
doi:10.1016/j.susc.2014.11.002 Google Scholar
18. Debasis, D., B. Ghosh, B. Singh, H. Lin, A. Politano, A. Bansil, and A. Agarwal, "Collective plasmonic modes in the chiral multifold fermionic material CoSi," Physical Review B, Vol. 105, No. 16, 2022. Google Scholar
19. Antonio, P., V. M. Silkin, I. A. Nechaev, M. S. Vitiello, L. Viti, Z. S. Aliev, M. B. Babanly, G. Chiarello, P. M. Echenique, and E. V. Chulkov, "Interplay of surface and Dirac plasmons in topological insulators: the case of Bi2Se3," Physical Review Letters, Vol. 115, No. 21, 2015.
doi:10.1103/PhysRevLett.115.216804 Google Scholar
20. Ali, S., A. Lauchner, S. Najmaei, C. A. Orozco, F. Wen, J. Lou, and N. Halas, "Enhancing the photocurrent and photoluminescence of single crystal monolayer MoS2 with resonant plasmonic nanoshells," Applied Physics Letters, Vol. 104, No. 3, 2014. Google Scholar
21. West, P. R., S. Lshii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," Laser & Photonics Reviews, Vol. 4, No. 6, 795-808, 2010.
doi:10.1002/lpor.200900055 Google Scholar
22. Jorgenson, R. C. and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, Vol. 12, No. 3, 213-220, 1993.
doi:10.1016/0925-4005(93)80021-3 Google Scholar
23. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
24. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
25. Otupiri, R., E. K. Akowuah, and S. Haxha, "Multi-channel SPR biosensor based on PCF for multi-analyte sensing applications," Optics Express, Vol. 23, No. 12, 15716, 2015.
doi:10.1364/OE.23.015716 Google Scholar
26. Xue, J., S. Li, Y. Xiao, W. Qin, X. Xin, and X. Zhu, "Polarization filter characters of the gold-coated and the liquid-filled photonic crystal fiber based on surface plasmon resonance," Optics Express, Vol. 21, No. 11, 13733, 2013.
doi:10.1364/OE.21.013733 Google Scholar
27. Li, X.-G., Y. Zhao, X. Zhou, and L. Cai, "High sensitivity all-fiber Sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber," Instrumentation Science & Technology, Vol. 46, No. 3, 253-264, 2017.
doi:10.1080/10739149.2017.1380038 Google Scholar
28. Wang, S., Y. Lu, W. Ma, N. Liu, and S. Fan, "D-shaped surface plasmon photonic crystal fiber temperature sensor," Plasmonics, 1-9, 2022. Google Scholar
29. Han, Y., L. Gong, F. Meng, H. Chen, Y. Wang, Z. R. Li, F. D. Zhou, M. Yang, J. Z. Guan, W. Yun, X. J. Guo, and W. Wang, "Highly sensitive temperature sensor based on surface plasmon resonance in a liquid-filled hollow-core negative-curvature fiber," Optik, Vol. 241, 2021. Google Scholar
30. Rifat, A., G. Mahdiraji, D. Chow, Y. Shee, R. Ahmed, and F. Adikan, "Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core," Sensors, Vol. 15, No. 5, 11499-11510, 2015.
doi:10.3390/s150511499 Google Scholar
31. Antonio, P. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Progress in Surface Science, Vol. 90, No. 2, 144-193, 2015.
doi:10.1016/j.progsurf.2014.12.002 Google Scholar
32. Ghosh, G., M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," Journal of Lightwave Technology, Vol. 12, No. 8, 1338-1342, 1994.
doi:10.1109/50.317500 Google Scholar
33. Vial, A., A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B, Vol. 71, No. 8, 2005.
doi:10.1103/PhysRevB.71.085416 Google Scholar
34. Yan, X., R. Fu, T. Cheng, and S. Li, "A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range," Sensors, Vol. 21, 3782, 2021.
doi:10.3390/s21113782 Google Scholar
35. Rifat, A. A., G. A. Mahdiraji, Y. M. Sua, Y. G. Shee, R. Ahmed, D. M. Chow, and F. R. M. Adikan, "Surface plasmon resonance photonic crystal fiber biosensor: A practical sensing approach," IEEE Photonics Technology Letters, Vol. 27, No. 15, 1628-1631, 2015.
doi:10.1109/LPT.2015.2432812 Google Scholar
36. Danlard, I. and E. K. Akowuah, "Assaying with PCF-based SPR refractive index biosensors: From recent configurations to outstanding detection limits," Optical Fiber Technology, Vol. 54, 102083, 2020.
doi:10.1016/j.yofte.2019.102083 Google Scholar
37. Lou, J., T. L. Cheng, S. G. Li, and X. N. Zhang, "Surface plasmon resonance photonic crystal fiber biosensor based on gold-graphene layers," Optical Fiber Technology, Vol. 50, 206-211, 2019.
doi:10.1016/j.yofte.2019.03.028 Google Scholar
38. Reyes Vera, E., C. M. Cordeiro, and P. Torres, "Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal," Applied Optics, Vol. 56, No. 2, 156-162, 2017.
doi:10.1364/AO.56.000156 Google Scholar
39. Liu, Q., S. G. Li, H. L. Chen, Z. K. Fan, and J. S. Li, "Photonic crystal fiber temperature sensor based on coupling between liquid-core mode and defect mode," IEEE Photonics Journal, Vol. 7, No. 2, 1-9, 2015. Google Scholar
40. Mo, X., J. T. Lv, Q. Liu, X. X. Jiang, and G. Y. Si, "A magnetic field SPR sensor based on temperature self-reference," Sensors, Vol. 21, No. 18, 6130, 2021.
doi:10.3390/s21186130 Google Scholar
41. Rifat, A. A., R. Ahmed, G. A. Mahdiraji, and F. R. M. Adikan, "Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR," IEEE Sensors Journal, Vol. 17, No. 9, 2776-2783, 2017.
doi:10.1109/JSEN.2017.2677473 Google Scholar