1. Wang, S. and R. Herschel, "Fast 3D-CFAR for drone detection with MIMO radars," 2021 18th European Radar Conference (EuRAD), 209-212, 2022.
doi:10.23919/EuRAD50154.2022.9784486 Google Scholar
2. Akcapinar, K. and S. Baykut, "CM-CFAR parameter learning based square-law detector for foreign object debris radar," 2018 15th European Radar Conference (EuRAD), 421-424, 2018.
doi:10.23919/EuRAD.2018.8546514 Google Scholar
3. Zankl, D., S. Schuster, R. Feger, and A. Stelzer, "What a Blast!: A massive MIMO radar system for monitoring the surface in steel industry blast furnaces," IEEE Microwave Magazine, Vol. 18, No. 6, 52-69, Sept.-Oct. 2017.
doi:10.1109/MMM.2017.2711998 Google Scholar
4. Li, J. and P. Stoica, "MIMO radar with colocated antennas," IEEE Signal Processing Magazine, Vol. 24, No. 5, 106-114, Sept. 2007.
doi:10.1109/MSP.2007.904812 Google Scholar
5. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "High-resolution single-snapshot DOA estimation in MIMO radar with colocated antennas," 2015 IEEE Radar Conference (RadarCon), 1134-1138, 2015.
doi:10.1109/RADAR.2015.7131164 Google Scholar
6. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276 Google Scholar
7. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
8. Oumar, O. A., M. F. Siyau, and T. P. Sattar, "Comparison between MUSIC and ESPRIT direction of arrival estimation algorithms for wireless communication systems," The First International Conference on Future Generation Communication Technologies, 99-103, 2012.
doi:10.1109/FGCT.2012.6476563 Google Scholar
9. Yu, Y., A. P. Petropulu, and H. V. Poor, "MIMO radar using compressive sampling," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 1, 146-163, Feb. 2010.
doi:10.1109/JSTSP.2009.2038973 Google Scholar
10. Ni, Z., B. Huang, and M. Cao, "Angular positions estimation of spatially extended targets for MIMO radar using complex spatiotemporal sparse Bayesian learning," IEEE Access, Vol. 7, 94473-94480, 2019.
doi:10.1109/ACCESS.2019.2926442 Google Scholar
11. Liu, Z. M., C. Zhang, and P. S. Yu, "Direction-of-arrival estimation based on deep neural networks with robustness to array imperfections," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7315-7327, Dec. 2018.
doi:10.1109/TAP.2018.2874430 Google Scholar
12. Huang, H., J. Yang, H. Huang, Y. Song, and G. Gui, "Deep learning for super-resolution channel estimation and DOA estimation based massive MIMO system," IEEE Transactions on Vehicular Technology, Vol. 67, No. 9, 8549-8560, Sept. 2018.
doi:10.1109/TVT.2018.2851783 Google Scholar
13. Bialer, O., N. Garnett, and T. Tirer, "Performance advantages of deep neural networks for angle of arrival estimation," ICASSP 2019 --- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3907-3911, 2019.
doi:10.1109/ICASSP.2019.8682604 Google Scholar
14. Zhu, W., M. Zhang, P. Li, and C. Wu, "Two-dimensional DOA estimation via deep ensemble learning," IEEE Access, Vol. 8, 124544-124552, 2020.
doi:10.1109/ACCESS.2020.3005221 Google Scholar
15. Ma, Y., Y. Zeng, and S. Sun, "A deep learning based super resolution DoA estimator with single snapshot MIMO radar data," IEEE Transactions on Vehicular Technology, Vol. 71, No. 4, 4142-4155, Apr. 2022.
doi:10.1109/TVT.2022.3151674 Google Scholar
16. Li, X., X. Wang, Q. Yang, and S. Fu, "Signal processing for TDM MIMO FMCW millimeter-wave radar sensors," IEEE Access, Vol. 9, 167959-167971, 2021.
doi:10.1109/ACCESS.2021.3137387 Google Scholar
17. Al-Sadoon, M. A. G., N. T. Ali, Y. Dama, A. Zuid, S. M. R. Jones, R. A. Abd-Alhameed, and J. M. Noras, "A new low complexity angle of arrival algorithm for 1D and 2D direction estimation in MIMO smart antenna systems," Sensors (Basel), Vol. 17, No. 11, 2631, Nov. 15, 2017.
doi:10.3390/s17112631 Google Scholar