1. BiofMet, 19ENG09, New metrological methods for biofuel materials analysis, 2020-2023, biofmet.eu.
2. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil-water content --- Measurements in coaxial transmission-line," Water Resources Research, Vol. 16, 574-582, 1980.
doi:10.1029/WR016i003p00574 Google Scholar
3. Kupfer, K., Electromagnetic Aquametry --- Electromagnetic Wave Interaction with Water and Moist Substances, Springer, 2005, link.springer.com/book/10.1007/b137700.
doi:10.1007/b137700
4. Ochsner, A., L. F. M. da Silva, and H. Altenbach, "Advanced structured materials," Structmat, 2015, springer.com/series/8611. Google Scholar
5. Antunes Neves, A. L., Application au domaine biomedical des moyens de caracterisation electromagnetique de materiaux dans le spectre des micro-ondes, Thesis doctoral, Aix Marseille University, Marseille, 2017, theses.fr/2017AIXM0320.
6. Fasoula, A., J. G. Bernard, G. Robin, and L. Duchesne, "Elaborated breast phantoms and experimental benchmarking of a microwave breast imaging system before first clinical," Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP), London, UK, April 9-13, 2018. Google Scholar
7. Rodriguez-Duarte, D. O., C. Origlia, J. A. Tobon Vasquez, R. Scapaticci, L. Crocco, and F. Vipiana, "Experimental assessment of real-time brain stroke monitoring via a microwave imaging scanner," IEEE Open Journal of Antennas and Propagation, Vol. 3, 824-835, 2022.
doi:10.1109/OJAP.2022.3192884 Google Scholar
8. Ben Ayoub, M. W., Dispositifs de mesure de constantes dielectriques dans les materiaux humides. Vers une meilleure tracabilite de la mesure de l'humidite des solides, Thesis doctoral, Aix Marseille University, 2018, theses.fr/2018AIXM0228.
9. Dubois, J. and J. M. Paindavoine, "Humidite dans les solides, liquides et gaz," Technique de l'ingenieur, April 10, 1982, P3760A v1. Google Scholar
10. Wernecke, R. and J. Wernecke, Industrial moisture and humidity measurement, a practical guide, February 2014, researchgate.net/publication/267376137.
doi:10.1002/9783527652419
11. Bhunjun, R. and R. W. Vogt, "Sensor system for contactless and online moisture measurements," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 11, 3034-3040, November 2010.
doi:10.1109/TIM.2010.2046692 Google Scholar
12. Skierucha, W., A. Szyp lowska, and A. Wilczek, "Aquametry in agrophysics," Advances in Agrophysical Research, 17-45, S. Grundas, A. Stepniewski, InTech., 2013. Google Scholar
13. Roussy, G. and J. A. Pearce, Foundations and Industrial Applications of Microwave and Radio Frequency Fields: Physical and Chemical Processes, Wiley, July 1995, wiley.com/en-us/9780471938491.
14. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, Ltd, 2004, wiley.com/en-us/9780470844922.
doi:10.1002/0470020466
15. Georget, E., "Preuve de concept d'une liaison radio mer-air d'une balise autonome de petites dimensions --- Projet BELOCOPA Conception d'antennes multi-bandes sur substrat souple,", Thesis doctoral arseille, Aix Marseille University, 2014, hal.science/tel-01115478v1. Google Scholar
16. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
17. Lange, E. A., P. P. Puzak, and L. A. Cooley, "Standard method for the 5/8 inch dynamic tear test," NRL Report, 7159, Naval Research Lab, Washington DC, 1970. Google Scholar
18. Ba, D. and P. Sabouroux, "EpsiMu, a toolkit for permittivity and permeability measurement in microwave domain at real time of all materials: Applications to solid and semisolid materials," Microwave and Optical Technology Letters, Vol. 52, No. 12, 2010.
doi:10.1002/mop.25570 Google Scholar
19. Gioia, A. L., E. Porter, I. Merunka, A. Shahzad, S. Salahuddin, M. Jones, and M. O'Halloran, "Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices," Diagnotiscs, Vol. 8, No. 2, 2018. Google Scholar
20. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection an short-circuit line methods for measuring permittivity and permeability," NIST Technical Note, 1355, 1993, nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1355r.pdf. Google Scholar
21. Gregory, A. P. and R. N. Clarke, "Tables of the complex permittivity of dielectric reference liquids at frequencies up to 5 GHz," Technical Report, MAT 23, National Physical Laboratory, 2012. Google Scholar
22. Maryott, A. A. and E. R. Smith, Table of dielectric constants of pure liquids, National Bureau of Standards, Washington D.C., 1951, nvlpubs.nist.gov/nistpubs/Legacy/circ/nbscircular514.pdf.