1. "About diabetes,", Int. Diabetes Federation, published 2019, last updated Feb. 2020. Accessed: Sep. 17, 2020. [Online]. Available: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html.
doi:10.14302/issn.2374-9431.jbd-15-647 Google Scholar
2. Nawaz, A., P. Ohlckers, S. Slid, M. Jacobsen, and M. N. Akram, "Review: Non-invasive continuous blood glucose measurement techniques," J. Bioinf. Diabetes, Vol. 1, No. 3, 1-27, Jul. 2016.
doi:10.4093/dmj.2019.0121 Google Scholar
3. Cappon, G., M. Vettoretti, G. Sparacino, and A. Facchinetti, "Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications," Diabetes Metabolism J., Vol. 43, No. 4, 383-397, Aug. 2019. Google Scholar
4. Bruen, D., C. Delaney, L. Florea, and D. Diamond, "Glucose sensing for diabetes monitoring: Recent developments," Sensors, Vol. 17, No. 8, Art. no. 1866, Aug. 2017.
doi:10.1021/ac60119a030 Google Scholar
5. Comer, J. P., "Semiquantitative specific test paper for glucose in urine," Analytical Chemistry, Vol. 28, No. 11, 1748-1750, Nov. 1956.
doi:10.1016/j.bios.2010.12.042 Google Scholar
6. Yao, H., A. J. Shum, M. Cowan, I. Lähdesmäki, and B. A. Parviz, "A contact lens with embedded sensor for monitoring tear glucose level," Biosensors Bioelectronics, Vol. 26, No. 7, 3290-3296, Mar. 2011.
doi:10.3390/bioengineering4040082 Google Scholar
7. Todd, C., P. Salvetti, K. Naylor, and M. Albatat, "Towards non-invasive extraction and determination of blood glucose levels," Bioengineering, Vol. 4, No. 4, 82-92, Sep. 2017.
doi:10.1373/clinchem.2004.032862 Google Scholar
8. Siegel, A., R. H. Guy, and M. B. Delgado-Charro, "Noninvasive glucose monitoring by reverse iontophoresis in vivo: Application of the internal standard concept," Clin. Chemistry, Vol. 50, No. 8, 1383-1390, Aug. 2004.
doi:10.1038/s41565-018-0112-4 Google Scholar
9. Lipani, L., B. G. R. Dupont, F. Doungmene, et al. "Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform," Nature Nanotechnol., Vol. 13, No. 6, 504-511, Apr. 2018.
doi:10.1016/j.bios.2009.02.001 Google Scholar
10. Caduff, A., M. S. Talary, M. Mueller, et al. "Non-invasive glucose monitoring in patients with Type 1 diabetes: A multisensor system combining sensors for dielectric and optical characterisation of skin," Biosensors Bioelectronics, Vol. 24, No. 9, 2778-2784, May 2009.
doi:10.1364/BOE.9.000289 Google Scholar
11. Kasahara, R., S. Kino, S. Soyama, and Y. Matsuura, "Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers," Biomed. Opt. Express, Vol. 9, No. 1, 289-302, Jan. 2018.
doi:10.1038/73213 Google Scholar
12. Kost, J., M. Pishko, R. A. Gabbay, R. Langer, and S. Mitragotri, "Transdermal monitoring of glucose and other analytes using ultrasound," Nature Med., Vol. 6, No. 3, 347-350, Mar. 2000. Google Scholar
13. Vashist, S. K., "Non-invasive glucose monitoring technology in diabetes management: A review," Analytica Chimica Acta, Vol. 750, 16-27, Oct. 2012.
doi:10.1038/s41598-017-06926-1 Google Scholar
14. Saha, S., H. Cano-Garcia, I. Sotiriou, O. Lipscombe, I. Gouzouasis, M. Koutsoupidou, G. Palikaras, R. Mackenzie, T. Reeve, P. Kosmas, and E. Kallos, "A glucose sensing system based on transmission measurements at millimetre waves using micro strip patch antennas," Sci. Rep., Vol. 7, 6855, 2017. Google Scholar
15. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," Proceedings of the 2017 IEEE MTT-S International Microwave Symposium, IEEE, 2017.
doi:10.1038/scientificamerican1217-28 Google Scholar
16. DiChristina, M. and B. S. Meyerson, "Top 10 emerging technologies of 2017," Sci. Am., Vol. 317, 28-39, 2017.
doi:10.1007/s13300-014-0092-9 Google Scholar
17. Overland, J., J. Abousleiman, A. Chronopoulos, et al. "Improving self-monitoring of blood glucose among adults with Type 1 diabetes: Results of the mobileTM study," Diabetes Ther., Vol. 5, 557-565, 2014.
doi:10.1089/dia.2005.7.612 Google Scholar
18. Wagner, J., C. Malchoff, and G. Abbott, "Invasiveness as a barrier to self-monitoring of blood glucose in diabetes," Diabetes Technol. Ther., Vol. 7, 612-619, 2005. Google Scholar
19. Mhatre, P. J. and M. Joshi, "Human body model with blood flow properties for non-invasive blood glucose measurement," Biomedical Signal Processing and Control, Elsevier, 2022. Google Scholar
20. Mhatre, P. J. and M. Joshi, "Electrically small wearable tunable antenna that fits into smartwatch dial," 8th International Conference for Convergence in Technology (I2CT), Scopus Indexed IEEE Conference (H Indexing 8), IEEE, Pune, India, 2023.
doi:10.1126/sciadv.aba5320 Google Scholar
21. Hanna, J., M. Bteich, and Y. Tawk, "Noninvasive, wearable, and tunable electromagnetic multisensing system for continuous glucose monitoring, mimicking vasculature anatomy," Science Advances, Vol. 6, No. 24, 2020.
doi:10.1063/5.0086935 Google Scholar
22. Stuart, T., J. Hanna, and P. Gutruf, "Wearable devices for continuous monitoring of biosignals: Challenges and opportunities," APL Bioengineering, Vol. 6, No. 2, 021502, 2022. Google Scholar
23. Hanna, J. and J. Constantine, "A slot antenna for non-invasive detection of blood constituents concentrations," International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019. Google Scholar
24. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Microwave noninvasive blood glucose monitoring sensor: Human clinical trial results," IEEE MTT-S International Microwave Symposium (IMS), 2017.
doi:10.1109/TMTT.2015.2472019 Google Scholar
25. Choi, H., S. Luzio, J. Beutler, and A. Porch, "Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 10, 3016-3025, Oct. 2015. Google Scholar