1. Deschamps, G. A. and W. Sichak, "Microstrip microwave antennas," Proc. of Third Symp. on USAF Antenna Research and Development Program, October 18-22, 1953. Google Scholar
2. Deschamps, G. A., "Theoretical aspects of microstrip waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 2, No. 1, 100-102, 1954.
doi:10.1109/TMTT.1954.1124864 Google Scholar
3. Munson, R. E., "Microstrip phased array antennas," Proc. of Twenty-Second Symp. on USAF Antenna Research and Development Program, October 1972. Google Scholar
4. Munson, R. E., "Conformal microstrip antennas and microstrip phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 1, 74-78, January 1974.
doi:10.1109/TAP.1974.1140723 Google Scholar
5. Munson, R. E. and J. K. Krutsinger, Single slot cavity antennas assembly, January 23, 1973.
6. Howell, J., Microstrip antennas, Vol. 23, No. 1, 90-93, IEEE Transactions on Antennas and Propagation, 1975.
7. Derneryd, A. G. and I. Karlsson, "Broadband microstrip antenna element and array," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, January 1981.
doi:10.1109/TAP.1981.1142530 Google Scholar
8. Sabban, A., "A new broadband stacked two-layer microstrip antenna," IEEE Antenna Propagat. Soc. Int. Symp. Digest, 63-66, 1983. Google Scholar
9. Huynh, T. and K.-F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 34, 1442-1443, 1998. Google Scholar
10. Luk, K. M., C. L. Mak, Y. L. Chow, and K. F. Lee, "Broadband microstrip patch antenna," Electronics Letters, Vol. 34, 1442-1443, 1998.
doi:10.1049/el:19981009 Google Scholar
11. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., J. Wiley & Sons, 2012.
12. Han, T., X.-Y. Cao, J. Gao, Y.-L. Zhao, and Y. Zhao, "A coding metasurface with properties of absorption and diffusion for RCS reduction," Progress In Electromagnetics Research C, Vol. 75, 181-191, 2017.
doi:10.2528/PIERC17041201 Google Scholar
13. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205 Google Scholar
14. Mol, V. A. L. and C. K. Aanandan, "Wideband radar cross section reduction using artificial magnetic conductor checkerboard surface," Progress In Electromagnetics Research M, Vol. 69, 171-183, 2018. Google Scholar
15. Yin, B., M. Ye, Y. Yu, and J. Gu, "A dual-band, miniaturized, AMC-based wearable antenna for health monitoring applications," Progress In Electromagnetics Research C, Vol. 112, 165-177, 2021.
doi:10.2528/PIERC21032202 Google Scholar
16. Yang, S.-L. S., A. A. Kishk, and K.-F. Lee, "Rectangular patch Antenna supported by artificial magnetic conducting surface," 2008 URSI General Assembly Chicago, August 2008. Google Scholar
17. Mitha, T. and M. Pour, "Investigation of dominant transverse electric mode in microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 643-648, 2019.
doi:10.1109/TAP.2018.2874765 Google Scholar
18. Radavaram, S. and M. Pour, "A wideband coplanar L-strip fed rectangular patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 9, 1779-1783, 2021.
doi:10.1109/LAWP.2021.3096958 Google Scholar
19. Yang, S.-L. S., A. A. Kishk, and K.-F. Lee, "The forbidden bandgap characteristic of EBG structures," Microw. Opt. Technol. Lett., Vol. 50, No. 11, 2965-2967, 2008.
doi:10.1002/mop.23804 Google Scholar
20. RO3000 Series Circuit Materials RO3003 RO3006 RO3010 and RO3035 High Frequency Laminates, Rogers Corp., Chandler, AZ, USA, 2022.
21. Adams, M. Excitation of the dominant transverse electric mode of a microstrip patch antenna using a coplanar L-strip feeding technique, Master's Thesis, Dept. of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, AL, ProQuest, 2022.