1. Li, P., M. Lewin, A. V. Kretinin, et al. "Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing," Nature Communication, Vol. 6, 7507, 2015.
doi:10.1038/ncomms8507 Google Scholar
2. Lipworth, B., J. Ensworth, K. Seetharam, et al. "Magnetic metamaterial superlens for increased range wireless power transfer," Science, Vol. 4, 3642, 2014. Google Scholar
3. Singh, R. K., A. Michel, P. Nepa, A. Salvatore, M. Terraroli, and P. Perego, "Compact and wearable Yagi-like textile antennas for near-field UHF-RFID readers," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1324-1333, 2021.
doi:10.1109/TAP.2020.3030944 Google Scholar
4. Musavi, F. and W. Eberle, "Overview of wireless power transfer technologies for electric vehicle battery charging," IEEE Power Electronics, Vol. 7, No. 1, 60-66, 2014. Google Scholar
5. Sherman, K., "Properties of focused apertures in the Fresnel region," IEEE Transactions on Antennas and Propagation, Vol. 10, No. 4, 399-408, 1962.
doi:10.1109/TAP.1962.1137900 Google Scholar
6. Hansen, R. C., "Focal region characteristics of focused array antennas," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 12, 1328-1337, 1985.
doi:10.1109/TAP.1985.1143539 Google Scholar
7. Shafai, L., A. A. Kishk, and A. Sebak, "Near field focusing of apertures and reflector antennas," Communications, Power and Computing, 246-251, 1997. Google Scholar
8. Bor, J., S. Clauzier, O. Lafond, and M. Himdi, "60 GHz foam-based antenna for near-field focusing," Electronics Letters, Vol. 50, No. 8, 571-572, 2015.
doi:10.1049/el.2014.0653 Google Scholar
9. Buffi, A., P. Nepa, and G. Manara, "Design criteria for near-field-focused planar arrays," IEEE Antennas & Propagation Magazine, Vol. 54, No. 1, 40-50, 2012.
doi:10.1109/MAP.2012.6202511 Google Scholar
10. Tofigh, F., J. Nourinia, M. Azarmanesh, and K. M. Khazaei, "Near-field focused array microstrip planar antenna for medical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 951-954, 2014.
doi:10.1109/LAWP.2014.2322111 Google Scholar
11. Siragusa, R., P. Lemaitre-Auger, and S. Tedjini, "Tunable near-field focused circular phase-array antenna for 5.8-GHz RFID applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 33-36, 2011.
doi:10.1109/LAWP.2011.2108632 Google Scholar
12. Stephan, K. D., J. B. Mead, D. M. Pozar, L. Wang, and J. A. Pearce, "A near field focused microstrip array for a radiometric temperature sensor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1199-1203, 2007.
doi:10.1109/TAP.2007.893429 Google Scholar
13. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1481-1487, 2011.
doi:10.1109/TAP.2011.2123069 Google Scholar
14. Luo, W. and L. Xu, "Wireless power transfer in the radiative near-field using a reconfigurable holographic metasurface aperture," IEEE International Conference on Communications, 1-5, 2018. Google Scholar
15. Wang, T., G. Zhai, R. Xie, et al. "Dual-band terahertz auto-focusing airy beam based on single-layer geometric metasurfaces with independent complex amplitude modulation at each wavelength," Advanced Theory and Simulations, 2019. Google Scholar
16. Li, J., Y. Yuan, Q. Wu, et al. "Dual-band independent phase control based on high efficiency metasurface," Chinese Optics Letters, Vol. 19, No. 10, 100501, 2021.
doi:10.3788/COL202119.100501 Google Scholar
17. Wang, T., R. Xie, S. Zhu, et al. "Dual-band high efficiency terahertz meta-devices based on reflective geometric metasurfaces," IEEE Access, Vol. 7, 58131-58138, 2019.
doi:10.1109/ACCESS.2019.2912017 Google Scholar
18. Chia, T. T., T. K. Chua, and Z. N. Chen, "Design of a C-band reflectarray antenna for near-field applications," International Conference on Electromagnetics in Advanced Applications, 1028-1031, 2019. Google Scholar
19. Zhang, P., L. Li, X. Zhang, H. Liu, and Y. Shi, "Design, measurement and analysis of near-field focusing reflective metasurface for dual-polarization and multi-focus wireless power transfer," IEEE Access, Vol. 7, 110387-110399, 2019.
doi:10.1109/ACCESS.2019.2934135 Google Scholar
20. Zhang, N., K. Chen, W. Zhao, G. Qian, J. Zhao, and Y. Feng, "Reconfigurable coding metasurface for dual-band dynamic near-field microwave focusing," International Conference on Microwave and Millimeter Wave Technology, 1-3, 2020. Google Scholar
21. Zhang, P., L. Li, and Y. Liu, "A dual-band reflective metasurface using near-field focusing and zero-order bessel beam for wireless power transfer," International Conference on Microwave and Millimeter Wave Technology, 1-3, 2019. Google Scholar
22. Cui, X. W., M. Wang, M. Chang, P. Zhang, J. Chen, and L. Li, "Analysis of feed antenna in near-field focusing-based reflectarray for wireless power transfer," IEEE MTT-S International Wireless Symposium, 1-3, 2020. Google Scholar
23. Du, G., D. Wang, X. Sun, and Y. Zhao, "Design of a reflective metasurface for near-field focusing," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 323-324, 2021. Google Scholar