1. Schnitzer, O., "Waves in slowly varying band-gap media," SIAM Journal on Applied Mathematics, Vol. 77, No. 4, 1516-1535, 2017.
doi:10.1137/16M110784X Google Scholar
2. Pereyaslavets, M., M. Sorella Ayza, B. Z. Katsenelenbaum, and L. Mercader Del Rio, Theory of Nonuniform Waveguides, IEE, 1998.
doi:10.1049/PBEW044E
3. Rulf, B., "An asymptotic theory of guided waves," Journal of Engineering Mathematics, Vol. 4, No. 3, 261-271, 1970.
doi:10.1007/BF01534885 Google Scholar
4. Hashimoto, M., "Asymptotic vector modes of inhomogeneous circular waveguides," Radio Science, Vol. 17, No. 1, 3-9, 1982.
doi:10.1029/RS017i001p00003 Google Scholar
5. Marcuse, D., Theory of Dielectric Optical Waveguides, 2nd Ed., Academic Press, 1991.
6. Skorobogatiy, M. A., M. Ibanescu, E. Lidorikis, J. D. Joannopoulos, S. G. Johnson, and P. Bienstman, "Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals," Physical Review E, Vol. 66, 066608, 2002. Google Scholar
7. Noda, S., J. D. Joannopoulos, S. P. Boyd, S. G. Johnson, A. Oskooi, and A. Mutapcic, "Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides," Optics Express, Vol. 20, No. 19, 21558, 2012.
doi:10.1364/OE.20.021558 Google Scholar
8. Ayzatsky, M. I., "Model of finite inhomogeneous cavity chain and approximate methods of its analysis," Problems of Atomic Science and Technology, No. 3, 28-37, 2021.
doi:10.46813/2021-133-028 Google Scholar
9. Amari, S., R. Vahldieck, J. Bornemann, and P. Leuchtmann, "Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues," IEEE Trans. Microw. Theory and Tech., Vol. 48, No. 3, 453-459, 2000.
doi:10.1109/22.826846 Google Scholar
10. Ayzatsky, M. I., "Inhomogeneous travelling-wave accelerating sections and WKB approach," Problems of Atomic Science and Technology, No. 4, 43-48, 2021.
doi:10.46813/2021-134-043 Google Scholar
11. Ayzatsky, M. I., "Modification of coupled integral equations method for calculation the accelerating structure characteristics," Problems of Atomic Science and Technology, No. 3, 56-61, 2022.
doi:10.46813/2022-139-056 Google Scholar
12. Ayzatsky, M. I., "Fast code CASCIE (Code for Accelerating Structures --- Coupled Integral Equations). Test results,", https://doi.org/10.48550/arXiv.2209.11291, 2022. Google Scholar
13. Ayzatsky, M. I., "Transformation of the linear difference equation into a system of the first order difference equations," Problems of Atomic Science and Technology, No. 4, 76-80, 2019.
doi:10.46813/2019-122-076 Google Scholar
14. Neal, R. B., The Stanford Two-mile Accelerator, W. A. Benjamin, 1968.
15. Khabiboulline, T., V. Puntus, M. Dohlus, N. Holtkamp, G. Kreps, S. Ivanov, and K. Jin, "A new tuning method for traveling wave structures," Proceedings of PAC 95, 1666-1668, 1995. Google Scholar
16. Ayzatsky, M. I. and E. Z. Biller, "Development of inhomogeneous disk-loaded accelerating waveguides and RF-coupling," Proceedings of LINAC 96, 119-121, 1996. Google Scholar