Vol. 118
Latest Volume
All Volumes
PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-07-11
Four-Port UWB MIMO Vivaldi Antenna Based on Resistor and Radiant Patch Loading
By
Progress In Electromagnetics Research M, Vol. 118, 11-23, 2023
Abstract
A four-port ultra-wideband (UWB) multi-input multi-output (MIMO) Vivaldi antenna loaded with resistance and rectangular radiation patch is designed and fabricated. The compact antenna consists of an improved ground and four microstrip feeders, with an overall size of 26 mm × 52 mm × 0.8 mm. The antenna adopts the resistance loading technology to absorb the excess electromagnetic waves in the low-frequency band and broaden the low-frequency bandwidth of the antenna. The rectangular radiation patch loading technique optimizes the main radiation direction and broadens the high-frequency bandwidth of the antenna. Meanwhile, T-slots and fence-type structures are etched on the ground plane, and I-stubs are added between microstrip feeders to reduce the antenna coupling and increase the isolation degree between the antenna ports. Simulation and experiments show that the impedance bandwidth of the MIMO antenna is 3.0~12.3 GHz; the isolation degree of the whole working bandwidth is higher than 15 dB; the envelope correlation coefficient (ECC) is smaller than 0.0125; and the increased diversity gain (DG) is more significant than 9.98 dBi. The antenna has good radiation performance and stable gain, which is suitable for applying the UWB MIMO system. This antenna has a particular reference significance for the research of the MIMO Vivaldi antenna.
Citation
Jingchang Nan, Huimei Zhang, and Jv Huang, "Four-Port UWB MIMO Vivaldi Antenna Based on Resistor and Radiant Patch Loading," Progress In Electromagnetics Research M, Vol. 118, 11-23, 2023.
doi:10.2528/PIERM23033001
References

1. Srivastava, G. and M. Khari, "An elliptical CPW fed UWB slot antenna," Wireless Personal Communications, Vol. 119, No. 10, 2253-2263, 2021.
doi:10.1007/s11277-021-08329-y

2. Kundu, S., "Experimental study of a printed ultra-wideband modified circular monopole antenna," Microwave and Optical Technology Letters, Vol. 61, No. 10, 1388-1393, 2019.
doi:10.1002/mop.31736

3. Marchais, C., G. Le Ray, and A. Sharaiha, "Stripline slot antenna for UWB communications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 319-322, 2006.
doi:10.1109/LAWP.2006.878894

4. Bayarzaya, B., N. Hussain, W. A. Awan, M. A. Sufian, A. Abbas, D. Choi, J. Lee, and N. Kim, "A compact MIMO antenna with improved isolation for ISM, sub-6 GHz, and WLAN application," Micromachines, Vol. 13, No. 8, 1355, 2022.
doi:10.3390/mi13081355

5. Najam, A., Y. Duroc, and S. Tedjni, "UWB-MIMO antenna with novel stub structure," Progress In Electromagnetics Research C, Vol. 19, 245-257, 2011.
doi:10.2528/PIERC10121101

6. Wani, Z. and D. Kumar, "Dual-band-notched antenna for UWB MIMO applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 2, 381-386, 2017.
doi:10.1017/S175907871500152X

7. Najafy, V. and M. Bemani, "Mutual-coupling reduction in triple-band MIMO antennas for WLAN using CSRRs," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 8, 762-768, 2020.
doi:10.1017/S1759078720000215

8. Abbas, A., N. Hussain, M. A. Su an, J. Jung, S. M. Park, and N. Kim, "Isolation and gain improvement of a rectangular notch UWB-MIMO antenna," Sensors, Vol. 22, No. 4, 1460, 2022.
doi:10.3390/s22041460

9. Yadav, D., M. P. Abegaonkar, S. K. Koul, V. Tiwari, and D. Bhatnagar, "Two element band-notched UWB MIMO antenna with high and uniform isolation," Progress In Electromagnetics Research M, Vol. 63, 119-129, 2018.
doi:10.2528/PIERM17091106

10. Wang, L., Z. Du, H. Yang, R. Ma, Y. Zhao, X.Cui, and X. Xi, "Compact UWB MIMO antenna with high isolation using fence-type decoupling structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 8, 1641-1645, 2019.
doi:10.1109/LAWP.2019.2925857

11. Li, Z., C. Yin, and X. Zhu, "Compact UWB MIMO Vivaldi antenna with dual band-notched characteristics," IEEE Access, Vol. 7, 38696-38701, 2019.
doi:10.1109/ACCESS.2019.2906338

12. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "A novel ITI-shaped isolation structure placed between two-port CPW-fed dual-band MIMO antenna for high isolation," AEU - International Journal of Electronics and Communications, Vol. 104, 35-43, 2019.
doi:10.1016/j.aeue.2019.03.009

13. Tang, Z., J. Zhan, X. Wu, Z. Xi, L. Chen, and S. Hu, "Design of a compact UWB-MIMO antenna with high isolation and dual band-notched characteristics," Journal of Electromagnetic Waves and Applications, Vol. 34, No. 4, 500-513, 2020.
doi:10.1080/09205071.2020.1724200

14. Arma, M., "Design and analysis of MIMO antenna with high isolation and dual notched band characteristics for wireless applications," Wireless Personal Communications, Vol. 112, No. 3, 1587-1599, 2020.
doi:10.1007/s11277-020-07117-4

15. Elabd, R. H., H. H. Abdullah, and M. Abdelazim, "Compact highly directive MIMO Vivaldi antenna for 5G millimeter-wave base station," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 42, No. 2, 173-194, 2021.
doi:10.1007/s10762-020-00765-4

16. Najafy, V. and M. Bemani, "Mutual-coupling reduction in triple-band MIMO antennas for WLAN using CSRRs," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 8, 762-768, 2020.
doi:10.1017/S1759078720000215

17. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "A compact UWB MIMO antenna with neutralization line for WLAN/ISM/mobile applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 11, e21907, 2019.
doi:10.1002/mmce.21907

18. Zhang, S. and G. F. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 166-169, 2016.
doi:10.1109/LAWP.2015.2435992

19. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and L. Matekovits, "A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures," Radio Science, Vol. 56, No. 3, 1-25, 2021.

20. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and L. Matekovits, "A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 2: Metamaterials and many more," Radio Science, Vol. 56, No. 3, 2021.

21. Bhattacharjee, A., A. Karmakar, and A. Saha, "A compact UWB DRA MIMO antenna realizing band notch characteristics and fractal inspired isolation mechanism," Progress In Electromagnetics Research C, Vol. 123, 213-226, 2022.
doi:10.2528/PIERC22060604

22. Gibson, P. J., "The Vivaldi aerial," IEEE 9th European Microwave Conference, 101-105, Brighton, UK, September 1979.

23. De Oliveira, A. M., M. B. Perotoni, S. T. Kofuji, and J. F. Justo, "A palm tree Antipodal Vivaldi Antenna with exponential slot edge for improved radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1334-1337, 2015.
doi:10.1109/LAWP.2015.2404875

24. Deng, C. and Y. J. Xie, "Design of resistive loading Vivaldi antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 240-243, 2009.
doi:10.1109/LAWP.2009.2013730

25. Chen, M. Z., H. B. Wang, and Y. J. Cheng, "2-18 GHz balanced antipodal Vivaldi conformal phased array antenna with resistive load and shorting posts," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 11, 2022.

26. Zhao, C., X. Li, M. Yang, and C. Sun, "Resistance-loaded miniaturized dual-layer Vivaldi antenna for plasma reflection diagnosis," Microwave and Optical Technology Letters, Vol. 63, No. 1, 205-210, 2012.
doi:10.1002/mop.32558

27. Huang, M., L. Wang, and W. Qiao, "Design of 2 to 18 GHz balanced antipodal Vivaldi antennas using substrate-integrated lenses," Electromagnetics, Vol. 38, No. 7, 478-487, 2018.
doi:10.1080/02726343.2018.1543158

28. Nassar, I. T. and T. M. Weller, "A novel method for improving antipodal Vivaldi antenna performance," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3321-3324, 2015.
doi:10.1109/TAP.2015.2429749

29. Wang, W. and Y. Zheng, "Improved design of the Vivaldi dielectric notch radiator with etched slots and a parasitic patch," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1064-1068, 2018.
doi:10.1109/LAWP.2018.2832098

30. Kumar Jaiswal, P., R. Bhattacharya, and A. Kumar, "A UWB Antipodal Vivaldi antenna with high gain using metasurface and notches," AEU - International Journal of Electronics and Communications, Vol. 159, 154473, 2023.
doi:10.1016/j.aeue.2022.154473

31. Aghoutane, B., S. Das, M. El Ghzaoui, B. T. P. Madhav, and H. El Faylali, "A novel dual band high gain 4-port millimeter wave MIMO antenna array for 28/37 GHz 5G applications," AEU - International Journal of Electronics and Communications, Vol. 145, 154071, 2022.
doi:10.1016/j.aeue.2021.154071

32. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and S. Kumar, "An ultra-compact two-port UWB-MIMO antenna with dual band-notched characteristics," AEU - International Journal of Electronics and Communications, Vol. 114, 154071, 2020.

33. Kumar, A., G. Saxena, P. Kumar, Y. K. Awasthi, P. Jain, S. S. Singhwal, and P. Ranjan, "Quad-band circularly polarized super-wideband MIMO antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 6, e23129, 2022.

34. Kumar, A., A. Q. Ansari, B. K. Kanaujia, and J. Kishor, "High isolation compact four-port MIMO antenna loaded with CSRR for multiband applications," Frequenz, Vol. 72, No. 9-10, 415-427, 2018.
doi:10.1515/freq-2017-0276

35. Sufian, M. A., N. Hussain, A. Abbas, J. Lee, S. G. Park, and N. Kim, "Mutual coupling reduction of a circularly polarized MIMO antenna using parasitic elements and DGS for V2X communications," IEEE Access, Vol. 10, 56388-56400, 2022.
doi:10.1109/ACCESS.2022.3177886