1. Hussain, M., W. A. Awan, E. M. Ali, M. S. Alzaidi, M. Alsharef, D. H. Elkamchouchi, A. Alzahrani, and M. Fathy Abo Sree, "Isolation improvement of parasitic element-loaded dual-band MIMO antenna for mm-wave applications," Micromachines, Vol. 13, 1918, 2022.
doi:10.3390/mi13111918 Google Scholar
2. Bayarzaya, B., N. Hussain, W. A. Awan, M. A. Sufian, A. Abbas, D. Choi, J. Lee, and N. Kim, "A compact MIMO antenna with improved isolation for ISM, sub-6 GHz, and WLAN application," Micromachines, Vol. 13, 1355, 2022.
doi:10.3390/mi13081355 Google Scholar
3. Rahman, S. U., Q. Cao, F. Amin, et al. "Multifunctional polarization converting metasurface and its application to reduce the radar cross-section of an isolated MIMO antenna," Journal of Physics D: Applied Physics, Vol. 53, No. 30, 305001, 2020.
doi:10.1088/1361-6463/ab85e7 Google Scholar
4. Khan, M. I., M. I. Khattak, S. U. Rahman, A. B. Qazi, A. A. Telba, and A. Sebak, "Design and investigation of modern UWB-MIMO antenna with optimized isolation," Micromachines, Vol. 11, No. 4, 432, 2020.
doi:10.3390/mi11040432 Google Scholar
5. Ahmad, A., A. Ullah, C. Feng, M. Khan, S. Ashraf, M. Adnan, S. Nazir, and H. U. Khan, "Towards an improved energy efficient and end-to-end secure protocol for iot healthcare applications," Security and Communication Networks, Vol. 2020, 1-10, 2020.
doi:10.1016/S1353-4858(20)30035-0 Google Scholar
6. Hussain, N., W. A. Awan, W. Ali, S. I. Naqvi, A. Zaidi, and T. T. Le, "Compact wideband patch antenna and its MIMO conguration for 28 GHz applications," AEU Int. J. Electron. Commun., Vol. 132, 153612, 2021.
doi:10.1016/j.aeue.2021.153612 Google Scholar
7. Ibrahim, A. A., M. A. Abdalla, A. B. Abdel-Rahman, and H. F. Hamed, "Compact MIMO antenna with optimized mutual coupling reduction using DGS," Int. J. Microw. Wirel. Technol., Vol. 6, 173-180, 2014.
doi:10.1017/S1759078713001013 Google Scholar
8. Sabaawi, A. M. A., K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, "Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications," Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
doi:10.2528/PIERC22050703 Google Scholar
9. Gong, Y.-Y., L. Wang, and Z. Zhang, "The novel Y shaped fractal defected ground structure for the mutual coupling reduction," Progress In Electromagnetics Research M, Vol. 72, 13-21, 2018.
doi:10.2528/PIERM18062301 Google Scholar
10. Yang, Y., Q. Chu, and C. Mao, "Multiband MIMO antenna for GSM, DCS, and LTE indoor applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1573-1576, 2016.
doi:10.1109/LAWP.2016.2517188 Google Scholar
11. Sun, Y., M. Tian, and G. S. Cheng, "Characteristic mode-based neutralization line design for MIMO antenna," International Journal of Antennas and Propagation, Jul. 30, 2022. Google Scholar
12. Ou Yang, J., F. Yang, and Z.Wang, "Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 310-313, 2011.
doi:10.1109/LAWP.2011.2140310 Google Scholar
13. Hussain, M., Q. Abbas, S. H. H. Gardzi, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Ultra-wideband MIMO antenna realization for indoor Ka-band applications," 2022 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), 108-109, 2022.
doi:10.23919/USNC-URSINRSM57467.2022.9881413 Google Scholar
14. Saravanan, M., V. B. Geo, and S. M. Umarani, "Gain enhancement of patch antenna integrated with metamaterial inspired superstrate," J. Electr. Sys. Info. Technol., Vol. 5, 263-270, 2018. Google Scholar
15. Samantaray, D. and S. Bhattacharyya, "A gain-enhanced slotted patch antenna using metasurface as superstrate configuration," IEEE Trans. Antennas Propag., Vol. 68, 6548-6556, 2020.
doi:10.1109/TAP.2020.2990280 Google Scholar
16. Arnmanee, P. and C. Phongcharoenpanich, "Improved microstrip antenna with HIS elements and FSS superstrate for 2.4 GHz band applications," Int. J. Antennas Propag., Vol. 2018, 1-11, 2018.
doi:10.1155/2018/9145373 Google Scholar
17. Kushwaha, N., R. Kumar, and T. Oli, "Design of a high-gain ultra-wideband slot antenna using frequency selective surface," Microwave Opt. Technol. Lett., Vol. 56, 1498-1502, 2014.
doi:10.1002/mop.28324 Google Scholar
18. Yuan, Y., X. Xi, and Y. Zhao, "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves Antennas Propag., Vol. 13, 1749-1755, 2019.
doi:10.1049/iet-map.2019.0083 Google Scholar
19. Hsing-Yi, C. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements," Microwave Opt. Technol. Lett., Vol. 53, 1547-1553, 2011. Google Scholar
20. Adelson, M. L., O. N. Henrique, H. O. C. Nilson, and J. P. da-Silva, "Effect of metamaterial cells array on a microstrip patch antenna design," J. Microwaves Optoelectron. Electromag. Appl., Vol. 19, 327-342, 2020. Google Scholar
21. Adibi, S., M. A. Honarvar, and A. Lalbakhsh, "Gain enhancement of wideband circularly polarized UWB antenna using FSS," Radio Sci., Vol. 56, e2020RS007098, 2021. Google Scholar
22. Afzal, M. U., A. Lalbakhsh, and K. P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," J. App. Phy., Vol. 124, 234901-234911, 2018.
doi:10.1063/1.5049204 Google Scholar
23. Mackay, A., B. Sanz-Izquierdo, and E. A. Parker, "Evolution of frequency selective surfaces," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 2, 1-7, 2014. Google Scholar
24. Nair, R. U. and R. M. Jha, "Electromagnetic design and performance analysis of airborne radomes: Trends and perspectives antenna applications corner," Anten. Propag. Mag., Vol. 56, 276-298, 2014.
doi:10.1109/MAP.2014.6931715 Google Scholar
25. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Trans. Antennas Propag., Vol. 57, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601 Google Scholar
26. Zahirjoozdani, M., M. Khalajamirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electron. Lett., Vol. 52, 767-768, 2016.
doi:10.1049/el.2016.0336 Google Scholar
27. Hiranandani, M. A., A. B. Yakovlev, and A. A. Kishk, "Artificial magnetic conductors realized by frequency-selective surfaces on a grounded dielectric slab for antenna applications," IEEE Proc. Microw. Antennas Propag., Vol. 153, 487-493, 2006.
doi:10.1049/ip-map:20050156 Google Scholar
28. Mark, R., N. Rajak, K. Mandal, and S. Das, "Isolation and gain enhancement using metamaterial-based super-strate for MIMO applications," Radioengineering, Vol. 28, No. 4, 689-695, 2019.
doi:10.13164/re.2019.0689 Google Scholar
29. Peng, H., R. Zhi, Q. Yang, J. Cai, Y. Wan, and G. Liu, "Design of a MIMO antenna with high gain and enhanced isolation for WLAN applications," Electron., Vol. 10, No. 14, 1659, 2021.
doi:10.3390/electronics10141659 Google Scholar
30. Jiang, H., L. M. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics J., Vol. 11, No. 1, 1-9, 2019. Google Scholar
31. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017.
doi:10.1109/LAWP.2017.2761903 Google Scholar
32. Nguyen, N. L., "Gain enhancement for MIMO antenna using metamaterial structure," Int. J. Microw. Wirel. Technolo., Vol. 11, No. 8, 851-862, 2019.
doi:10.1017/S175907871900059X Google Scholar
33. Khajeh-Khalili, F., M. A. Honarvar, M. Naser-Moghadasi, and M. Dolatshahi, "Gain enhancement and mutual coupling reduction of multiple-intput multiple-output antenna for millimeter-wave applications using two types of novel metamaterial structures," Int. J. RF Microw. Comp. Aided Eng., Vol. 30, No. 1, e22006, 2020. Google Scholar
34. Firmansyah, T., H. Herudin, S. Suhendar, R. Wiryadinata, M. I. Santoso, Y. R. Denny, and T. Supriyanto, "Bandwidth and gain enhancement of MIMO antenna by using ring and circular parasitic with air-gap microstrip structure," TELKOMNIKA, Vol. 15, No. 3, 1155-1163, 2017.
doi:10.12928/telkomnika.v15i3.6377 Google Scholar
35. Niu, Z., H. Zhang, Q. Chen, and T. Zhong, "Isolation enhancement in closely coupled dual-band MIMO patches antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 8, 1686-1690, 2019.
doi:10.1109/LAWP.2019.2928230 Google Scholar
36. Mohanty, A., B. R. Behera, and N. Nasimuddin, "Hybrid metasurface loaded tri-port compact antenna with gain enhancement and pattern diversity," Int. J. RF Microw. Comp. Aided Eng., Vol. 31, No. 11, e22795, 2021. Google Scholar
37. Ullah, H., S. U. Rahman, Q. Cao, I. Khan, and H. Ullah, "Design of SWB MIMO antenna with extremely wide-band isolation," Electron., Vol. 9, No. 1, 194, 2020.
doi:10.3390/electronics9010194 Google Scholar
38. Jabire, A. H., H. X. Zheng, A. Abdu, and Z. Song, "Characteristic mode analysis and design of wide band MIMO antenna consisting of metamaterial unit cell," Electron., Vol. 8, No. 1, 68, 2019.
doi:10.3390/electronics8010068 Google Scholar
39. Khan, I., K. Zhang, Q. Wu, I. Ullah, L. Ali, H. Ullah, and S. U. Rahman, "A wideband high-isolation microstrip MIMO circularly-polarized antenna based on parasitic elements," Materials, Vol. 16, No. 1, 103, Jan. 2023.
doi:10.3390/ma16010103 Google Scholar
40. Rahman, S. U., H. Deng, M. Sajjad, A. Rauf, Z. Shafiq, M. Ahmad, and S. Iqbal, "Angularly stable frequency selective surface for the gain enhancement of isolated multiple input multiple output antenna," Microwave Opt. Technol. Lett., Vol. 63, No. 11, 2803-2810, Nov. 2021.
doi:10.1002/mop.32980 Google Scholar
41. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
42. Khan, I., Q. Wu, I. Ullah, S. U. Rahman, H. Ullah, and K. Zhang, "Designed circularly polarized two-port microstrip MIMO antenna for WLAN applications," Applied Sciences, Vol. 12, No. 3, 1068, Jan. 20, 2022.
doi:10.3390/app12031068 Google Scholar