1. Yao, C., C. Li, X. Jin, and L. Zhang, "A fast two-parameter CFAR algorithm based on FFT for ship detection in large-scale SAR images," 2022 5th International Conference on Information Communication and Signal Processing (ICICSP), 244-248, Shenzhen, China, November 26-28, 2022. Google Scholar
2. Bai, L., C. Yao, Z. Ye, D. Xue, X. Lin, and M. Hui, "A novel anchor-free detector using global context-guide feature balance pyramid and united attention for SAR ship detection," IEEE Geoscience and Remote Sensing Letters, Vol. 20, 1-5, 2023.
doi:10.1109/LGRS.2023.3252590 Google Scholar
3. Qian, G., Y. Wang, and M. Jian, "Estimation of doppler parameters based on PSO for BFSAR ship target imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 20, 1-5, 2023.
doi:10.1109/LGRS.2023.3250222 Google Scholar
4. Wang, Z., Y. Li, Y. Li, J. Zhao, Y. Huang, and S. Shao, "Research on compound scattering modeling and imaging methods of sea surface ship target for GEO-UAV BiSAR," 2022 3rd China International SAR Symposium (CISS), 1-5, Shanghai, China, November 2-4, 2022. Google Scholar
5. Zhang, Y., M. Xing, J. Zhang, G.-C. Sun, and D. Xu, "Robust multi-ship tracker in SAR imagery by fusing feature matching and modified KCF," IEEE Geoscience and Remote Sensing Letters, Vol. 20, 1-5, 2023. Google Scholar
6. Li, N., X. Pan, L. Yang, Z. Huang, Z. Wu, and X. Zhang, "Ship target detection method based on local saliency enhancement," 2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT), 619-623, Hefei, China, August 21-23, 2022. Google Scholar
7. Wu, P., S. J. Su, X. Z. Tong, R. Guo, B. Sun, and J. J. Zhang, "SARFB: Strengthened asymmetric receptive field block for accurate infrared ship detection," IEEE Sens. J., Vol. 23, 5028-5044, 2023.
doi:10.1109/JSEN.2023.3237031 Google Scholar
8. Huang, Y., Z. Zhao, Z. Nie, and Q.-H. Liu, "Dynamic volume equivalent SBR method for electromagnetic scattering of targets moving on the sea," IEEE Trans. Antennas Propag., Vol. 20, 3509-3519, 2023.
doi:10.1109/TAP.2023.3234711 Google Scholar
9. Shi, F., J. Li, W. Jiang, M. Zhang, and Z. Li, "Research on scattering characteristics of ship targets on two-dimensional dynamic sea surface," 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), 180-182, Shenzhen, China, October 11-13, 2021. Google Scholar
10. Luo, G., Z. H. Xiong, M. B. Zhou, Q. X. Wan, and Z. Ren, "A study of electromagnetic scattering from Kelvin ship wake on the finite depth sea surface," 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, Harbin, China, August 12-15, 2022. Google Scholar
11. Sun, X. F., M. Y. Cai J. K. Wang, and C. L. Liu, "Numerical simulation of the Kelvin wake patterns," Appl. Sci., Vol. 12, 6265, 2022.
doi:10.3390/app12126265 Google Scholar
12. Wang, H., D. Nie, Y. Zuo, L. Tang, and M. Zhang, "Nonlinear ship wake detection in SAR images based on electromagnetic scattering model and YOLOv5," Remote Sens., Vol. 14, 5788, 2022.
doi:10.3390/rs14225788 Google Scholar
13. Song, M. Z., R. Guo, X. R. Ma, Y. T. Chen, and J. S. Wang, "Polarization reflection distribution characteristics of wakes on the sea surface," Appl. Opt., Vol. 61, 7748-7756, 2022.
doi:10.1364/AO.463315 Google Scholar
14. Li, J., L. Wang, M. Zhang, Y. -C. Jiao, and G. Liu, "Ship velocity automatic estimation method via two-dimensional spectrum pattern of Kelvin wakes in SAR images," IEEE J. Sel. Top Appl. Earth Obs. Remote Sens., Vol. 14, 4779-4786, 2021.
doi:10.1109/JSTARS.2021.3076846 Google Scholar
15. Bi, N., J. Qin, and T. Jiang, "Partition detection and location of a Kelvin wake on a 2-D rough sea surface by feature selective validation," IEEE Access, Vol. 6, 16345-16352, 2018.
doi:10.1109/ACCESS.2018.2811038 Google Scholar
16. Deng, Y., M. Zhang, and L. Wang, "SAR image simulation analysis of sea surface containing underwater object wake," 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-4, Xiamen, China, November 26-29, 2019. Google Scholar
17. Wei, Y., Z. Wu, H. Li, J. Wu, and T. Qu, "Application of periodic structure scattering in Kelvin ship wakes detection," Sustain. Cities Soc., Vol. 47, Art. No. 101463, May 2019.
doi:10.1016/j.scs.2019.101463 Google Scholar
18. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," J. Geophys. Res., Vol. 102, 15781-15796, 1997.
doi:10.1029/97JC00467 Google Scholar
19. Wang, L., L. Guo, and X. Meng, "Research on electromagnetic scattering characteristics of Kelvin wake of ship based on MPI," 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-4, Hangzhou, China, December 3-6, 2018. Google Scholar
20. Zhang, M., H. Chen, and H. Yin, "Facet-based investigation on EM scattering from electrically large sea surface with two-scale profiles: Theoretical model," IEEE Trans. Geosci. Electron., Vol. 49, 1967-1975, 2011.
doi:10.1109/TGRS.2010.2099662 Google Scholar
21. Zhao, Y., X. Yuan, M. Zhang, and H. Chen, "Radar scattering from the composite ship-ocean scene: Facet-based asymptotical model and specular reflection weighted model," IEEE Trans. Antennas Propag., Vol. 62, 4810-4815, 2014.
doi:10.1109/TAP.2014.2330869 Google Scholar
22. Xu, F. and Y. Jin, "Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface," IEEE Trans. Antennas Propag., Vol. 57, 1495-1505, 2009.
doi:10.1109/TAP.2009.2016691 Google Scholar
23. Zhang, M., Y. Zhao, J. X. Li, and P.-B. Wei, "Reliable approach for composite scattering calculation from ship over a sea surface based on FBAM and GO-PO models," IEEE Trans. Antennas Propag., Vol. 65, 775-784, 2017.
doi:10.1109/TAP.2016.2633066 Google Scholar
24. Wei, P. B., M. Zhang, W. Niu, and W. Q. Jiang, "GPU-based combination of GO and PO for electromagnetic scattering of satellite," IEEE Trans. Antennas Propag., Vol. 60, 5278-5285, 2012.
doi:10.1109/TAP.2012.2207679 Google Scholar
25. Gordon, W., "Far-field approximations to the Kirchhoff-Helmholtz representations of scattered fields," IEEE Trans. Antennas Propag., Vol. 23, 590-592, 1975.
doi:10.1109/TAP.1975.1141105 Google Scholar