1. De, M., T. K. Gangopadhyay, and V. K. Singh, "Prospects of photonic crystal fiber as physical sensor: An overview," Sensors, Vol. 19, No. 3, 464, 2019.
doi:10.3390/s19030464 Google Scholar
2. Knight, J., T. Birks, P. S. J. Russell, and J. De Sandro, "Properties of photonic crystal fiber and the effective index model," JOSA A, Vol. 15, No. 3, 748-752, 1998.
doi:10.1364/JOSAA.15.000748 Google Scholar
3. Van, L. C., K. D. Xuan, T. Le Canh, T. T. Doan, T. N. Thi, H. Van Le, and , "Supercontinuum generation in chalcogenide photonic crystal fiber infiltrated with liquid," Optical Materials, Vol. 137, 113547, 2023.
doi:10.1016/j.optmat.2023.113547 Google Scholar
4. Liu, Y., et al., "Highly sensitive temperature sensor based on Sagnac interferometer using photonic crystal fiber with circular layout," Sensors and Actuators A: Physical, Vol. 314, 112236, 2020.
doi:10.1016/j.sna.2020.112236 Google Scholar
5. Du, H., X. Sun, Y. Hu, X. Dong, and J. Zhou, "High sensitive refractive index sensor based on cladding etched photonic crystal fiber Mach-Zehnder interferometer," Photonic Sensors, Vol. 9, 126-134, 2019.
doi:10.1007/s13320-019-0532-2 Google Scholar
6. Butt, M., S. N. Khonina, and N. Kazanskiy, "Recent advances in photonic crystal optical devices: A review," Optics & Laser Technology, Vol. 142, 107265, 2021.
doi:10.1016/j.optlastec.2021.107265 Google Scholar
7. Kumar, D., M. Khurana, M. Sharma, and V. Singh, "Analogy of gold, silver, copper and aluminium based ultra-sensitive surface plasmon resonance photonic crystal fiber biosensors," Materials Today: Proceedings, 2023. Google Scholar
8. Guo, Z., J. Yuan, C. Yu, X. Sang, K. Wang, B. Yan, L. Li, S. Kang, and X. Kang, "Highly coherent supercontinuum generation in the normal dispersion liquid-core photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 48, 67-76, 2016.
doi:10.2528/PIERM15122302 Google Scholar
9. Ouadah, M. C. E., M. Debbal, H. Chikh-Bled, and M. Bouregaa, "Effect of the temperature and the geometrical parameters on the modal properties of circular photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 115, 1-10, 2022. Google Scholar
10. Li, W., T. Matniyaz, S. Gafsi, et al. "151W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ~978 nm," Optics Express, Vol. 27, No. 18, 24972-24977, 2019.
doi:10.1364/OE.27.024972 Google Scholar
11. Gangwar, R. K., A. K. Pathak, J. Qin, and X. Wang, "Physics of photonic crystals and applications," Modern Luminescence from Fundamental Concepts to Materials and Applications, 313-327, Elsevier, 2023. Google Scholar
12. Li, M., R. Singh, M. S. Soares, C. Marques, B. Zhang, and S. Kumar, "Convex fiber-tapered seven core fiber-convex fiber (CTC) structure-based biosensor for creatinine detection in aquaculture," Optics Express, Vol. 30, No. 8, 13898-13914, 2022.
doi:10.1364/OE.457958 Google Scholar
13. Kiroriwal, M. and P. Singal, "Broadband mid-infrared supercontinuum generation in AlGaAs photonic crystal fibers by liquid infiltration and rod-filling approaches," Journal of Computational Electronics, 1-8, 2023. Google Scholar
14. Parandin, F. and A. Sheykhian, "Design and simulation of a 2 x 1 all-optical multiplexer based on photonic crystals," Optics & Laser Technology, Vol. 151, 108021, 2022.
doi:10.1016/j.optlastec.2022.108021 Google Scholar
15. Kumar, C. and G. Kumar, "Performance evaluation of OADM for super dense wavelength division multiplexing system," Progress In Electromagnetics Research Letters, Vol. 85, 131-135, 2019.
doi:10.2528/PIERL19022503 Google Scholar
16. Geng, Y., L. Wang, Y. Xu, A. Kumar, X. Tan, and X. Li, "Wavelength multiplexing of four-wave mixing based fiber temperature sensor with oil-filled photonic crystal fiber," Optics Express, Vol. 26, No. 21, 27907-27916, 2018.
doi:10.1364/OE.26.027907 Google Scholar
17. Amphawan, A., S. Chaudhary, T.-K. Neo, M. Kakavand, and M. Dabbagh, "Radio-over-free space optical space division multiplexing system using 3-core photonic crystal fiber mode group multiplexers," Wireless Networks, Vol. 27, No. 1, 211-225, 2021.
doi:10.1007/s11276-020-02447-4 Google Scholar
18. Xiong, Y., T. Umeda, X. Zhang, et al. "Photonic crystal circular-defect microcavity laser designed for wavelength division multiplexing," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 24, No. 6, 1-7, 2018.
doi:10.1109/JSTQE.2018.2846053 Google Scholar
19. Priyadharshini, C., R. Devika, S. Selvendran, and A. S. Raja, "Investigating the cross core octagonal photonic crystal fiber with high birefringence: A design and analysis study," Materials Today: Proceedings, 2023. Google Scholar
20. Malka, D. and G. Katz, "An eight-channel C-band demux based on multicore photonic crystal fiber," Nanomaterials, Vol. 8, No. 10, 845, 2018.
doi:10.3390/nano8100845 Google Scholar
21. Dadabayev, R. and D. Malka, "A visible light RGB wavelength demultiplexer based on polycarbonate multicore polymer optical fiber," Optics & Laser Technology, Vol. 116, 239-245, 2019.
doi:10.1016/j.optlastec.2019.03.034 Google Scholar
22. Gelkop, B., L. Aichnboim, and D. Malka, "RGB wavelength multiplexer based on polycarbonate multicore polymer optical fiber," Optical Fiber Technology, Vol. 61, 102441, 2021.
doi:10.1016/j.yofte.2020.102441 Google Scholar