Vol. 134
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-07-14
A Fourth-Order Bandpass Filter with High Selectivity and Out-of-Band Suppression
By
Progress In Electromagnetics Research C, Vol. 134, 237-247, 2023
Abstract
This paper presents a novel fourth-order bandpass filter with high selectivity and out-of-band suppression based on equivalent magnetic side wall cavities (MSWCs). By loading a via hole into an MSWC to produce a zero mode as a non-resonating node and using the dual MSWC modes TEM001 and TE100 as resonant modes, a modified doublet with two poles and two transmission zeros (TZs) can be formed. Three types of frequency response, either quasi-elliptic or asymmetric, can be obtained and designed flexibly. The TZs can be located on both sides of the passband or both on just one side. The mechanisms for generating the TZs are analyzed, and the adjustment of the TZ positions is discussed. The proposed four-pole quasi-elliptic filter with four TZs is a cascade of two such doublets with two different types of asymmetric response. It has been fabricated and measured to validate the design. Comparison is made with some previous work on substrate integrated waveguide filters. The developed filter is free from radiation and relatively compact among high order filters with multiple adjustable TZs based on cascaded cavities of the substrate integrated waveguide type.
Citation
Min-Ming Sun, Yun-Sheng Xu, Qiao Zhang, Chang Chen, and Lingyun Zhou, "A Fourth-Order Bandpass Filter with High Selectivity and Out-of-Band Suppression," Progress In Electromagnetics Research C, Vol. 134, 237-247, 2023.
doi:10.2528/PIERC23050201
References

1. Liu, Q., D. Zhou, Y. Zhang, D. Zhang, and D. Lv, "Substrate integrated waveguide bandpass filters in box-like topology with bypass and direct couplings in diagonal cross-coupling path," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 3, 1014-1022, Mar. 2019.
doi:10.1109/TMTT.2018.2889450

2. Zhu, F., W. Hong, J. -X. Chen, and K. Wu, "Cross-coupled substrate integrated waveguide filters with improved stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 12, 633-635, Dec. 2012.
doi:10.1109/LMWC.2012.2228174

3. Chu, P., W. Hong, M. Tuo, K.-L. Zheng, W.-W. Yang, F. Xu, and K. Wu, "Dual-mode substrate integrated waveguide filter with flexible response," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 3, 824-830, Mar. 2017.
doi:10.1109/TMTT.2016.2633346

4. Zhu, F., G. Q. Luo, B. You, X. H. Zhang, and K. Wu, "Planar dual-mode bandpass filters using perturbed substrate-integrated waveguide rectangular cavities," IEEE Trans. Microw. Theory Techn., Vol. 69, No. 6, 3048-3057, Jun. 2021.
doi:10.1109/TMTT.2021.3074617

5. Zhu, F., G. Q. Luo, Z. Liao, X. W. Dai, and K. Wu, "Compact dual-mode bandpass filters based on half-mode substrate-integrated waveguide cavities," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 5, 441-444, May 2021.
doi:10.1109/LMWC.2021.3066569

6. Liu, Q., D. Zhou, S. Wang, and Y. Zhang, "Highly-selective pseudoelliptic filters based on dual-mode substrate integrated waveguide resonators," Electron. Lett., Vol. 52, No. 14, 1233-1235, Jul. 2016.
doi:10.1049/el.2016.1517

7. Amari, S. and U. Rosenberg, "A universal building block for advanced modular design of microwave filters," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 541-543, Dec. 2003.
doi:10.1109/LMWC.2003.820637

8. Wu, L.-S., X.-L. Zhou, Q.-F. Wei, and W.-Y. Yin, "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 777-779, Dec. 2009.
doi:10.1109/LMWC.2009.2034034

9. Shen, W., "Extended-doublet half-mode substrate integrated waveguide bandpass filter with wide stopband," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 305-307, Apr. 2018.
doi:10.1109/LMWC.2018.2808408

10. Amari, S. and U. Rosenberg, "New building blocks for modular design of elliptic and self-equalized filters," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 2, 721-736, Feb. 2004.
doi:10.1109/TMTT.2003.821923

11. Liu, Z., G. Xiao, and L. Zhu, "Triple-mode bandpass filters on CSRR-loaded substrate integrated waveguide cavities," IEEE Trans. Compon., Packag. Manuf. Technol., Vol. 6, No. 7, 1099-1105, Jul. 2016.
doi:10.1109/TCPMT.2016.2574562

12. Zhu, Y. and Y. Dong, "UIR-loaded dual-mode SIW filter with compact size and controllable transmission zeros," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 667-670, Los Angeles, CA, USA, Aug. 2020.

13. Liu, Q., D. Zhou, D. Lv, D. Zhang, and Y. Zhang, "Ultra-compact highly selective quasi-elliptic filters based on combining dual-mode SIW and coplanar waveguides in a single cavity," IET Microw. Antennas Propag., Vol. 12, No. 3, 360-366, Feb. 2018.
doi:10.1049/iet-map.2017.0516

14. Alotaibi, S. K. and J.-S. Hong, "Novel substrate integrated folded waveguide filter," Microw. Opt. Technol. Lett., Vol. 50, No. 4, 1111-1114, Apr. 2008.
doi:10.1002/mop.23272

15. Moro, R., S. Moscato, M. Bozzi, and L. Perregrini, "Substrate integrated folded waveguide filter with out-of-band rejection controlled by resonant-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 214-216, Apr. 2015.
doi:10.1109/LMWC.2015.2400927

16. Ji, Q., Y.-S. Xu, C. Chen, L. Zhou, and Y.-F. Zhang, "Cavities with four equivalent magnetic side walls in composite planar multilayered and substrate integrated waveguide structures," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, Sept. 2020.

17. Porath, R., "Theory of miniaturized shorting-post microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 1, 41-47, Jan. 2000.
doi:10.1109/8.827384

18. Sun, M.-M., Y.-S. Xu, C. Chen, and L. Zhou, "A compact bandpass filter with high selectivity and wide stopband," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, May 2023.

19. Zhang, Y.-F., Y.-S. Xu, C. Chen, and L. Zhou, "Miniaturized single band filter with wide outer-band rejection at higher frequencies," 2021 Photonics & Electromagnetics Research Symposium (PIERS), 1520-1526, Hangzhou, China, Nov. 21-25, 2021.

20. Amari, S. and U. Rosenberg, "Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 10, 3135-3141, Oct. 2005.
doi:10.1109/TMTT.2005.855359

21. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, 2nd Ed., John Wiley & Sons Inc., Hoboken, NJ, USA, 2011.

22. Kim, P. and Y. Jeong, "Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter- and one-eighth modes cavities," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 1, 16-19, Jan. 2020.
doi:10.1109/LMWC.2019.2954603

23. Shi, Y., K. Zhou, C. Zhou, and W. Wu, "Compact QMSIW quasi-elliptic filter based on a novel electric coupling structure," Electron. Lett., Vol. 53, No. 23, 1528-1530, Nov. 2017.
doi:10.1049/el.2017.3367

24. Pelluri, S. and M. V. Kartikeyan, "Compact QMSIW bandpass filter using composite right/left-handed transmission line in grounded coplanar waveguide," Int. J. RF Microw. Comput.-Aided Eng., Vol. 28, No. 9, Nov. 2018.

25. Huang, X.-L., L. Zhou, M. Volkel, A. Hagelauer, J.-F. Mao, R. Weigel, "Design of a novel quarter-mode substrate-integrated waveguide filter with multiple transmission zeros and higher mode suppressions," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 12, 5573-5584, Dec. 2018.
doi:10.1109/TMTT.2018.2879087