1. Liu, Q., D. Zhou, Y. Zhang, D. Zhang, and D. Lv, "Substrate integrated waveguide bandpass filters in box-like topology with bypass and direct couplings in diagonal cross-coupling path," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 3, 1014-1022, Mar. 2019.
doi:10.1109/TMTT.2018.2889450 Google Scholar
2. Zhu, F., W. Hong, J. -X. Chen, and K. Wu, "Cross-coupled substrate integrated waveguide filters with improved stopband performance," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 12, 633-635, Dec. 2012.
doi:10.1109/LMWC.2012.2228174 Google Scholar
3. Chu, P., W. Hong, M. Tuo, K.-L. Zheng, W.-W. Yang, F. Xu, and K. Wu, "Dual-mode substrate integrated waveguide filter with flexible response," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 3, 824-830, Mar. 2017.
doi:10.1109/TMTT.2016.2633346 Google Scholar
4. Zhu, F., G. Q. Luo, B. You, X. H. Zhang, and K. Wu, "Planar dual-mode bandpass filters using perturbed substrate-integrated waveguide rectangular cavities," IEEE Trans. Microw. Theory Techn., Vol. 69, No. 6, 3048-3057, Jun. 2021.
doi:10.1109/TMTT.2021.3074617 Google Scholar
5. Zhu, F., G. Q. Luo, Z. Liao, X. W. Dai, and K. Wu, "Compact dual-mode bandpass filters based on half-mode substrate-integrated waveguide cavities," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 5, 441-444, May 2021.
doi:10.1109/LMWC.2021.3066569 Google Scholar
6. Liu, Q., D. Zhou, S. Wang, and Y. Zhang, "Highly-selective pseudoelliptic filters based on dual-mode substrate integrated waveguide resonators," Electron. Lett., Vol. 52, No. 14, 1233-1235, Jul. 2016.
doi:10.1049/el.2016.1517 Google Scholar
7. Amari, S. and U. Rosenberg, "A universal building block for advanced modular design of microwave filters," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 12, 541-543, Dec. 2003.
doi:10.1109/LMWC.2003.820637 Google Scholar
8. Wu, L.-S., X.-L. Zhou, Q.-F. Wei, and W.-Y. Yin, "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 777-779, Dec. 2009.
doi:10.1109/LMWC.2009.2034034 Google Scholar
9. Shen, W., "Extended-doublet half-mode substrate integrated waveguide bandpass filter with wide stopband," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 305-307, Apr. 2018.
doi:10.1109/LMWC.2018.2808408 Google Scholar
10. Amari, S. and U. Rosenberg, "New building blocks for modular design of elliptic and self-equalized filters," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 2, 721-736, Feb. 2004.
doi:10.1109/TMTT.2003.821923 Google Scholar
11. Liu, Z., G. Xiao, and L. Zhu, "Triple-mode bandpass filters on CSRR-loaded substrate integrated waveguide cavities," IEEE Trans. Compon., Packag. Manuf. Technol., Vol. 6, No. 7, 1099-1105, Jul. 2016.
doi:10.1109/TCPMT.2016.2574562 Google Scholar
12. Zhu, Y. and Y. Dong, "UIR-loaded dual-mode SIW filter with compact size and controllable transmission zeros," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 667-670, Los Angeles, CA, USA, Aug. 2020. Google Scholar
13. Liu, Q., D. Zhou, D. Lv, D. Zhang, and Y. Zhang, "Ultra-compact highly selective quasi-elliptic filters based on combining dual-mode SIW and coplanar waveguides in a single cavity," IET Microw. Antennas Propag., Vol. 12, No. 3, 360-366, Feb. 2018.
doi:10.1049/iet-map.2017.0516 Google Scholar
14. Alotaibi, S. K. and J.-S. Hong, "Novel substrate integrated folded waveguide filter," Microw. Opt. Technol. Lett., Vol. 50, No. 4, 1111-1114, Apr. 2008.
doi:10.1002/mop.23272 Google Scholar
15. Moro, R., S. Moscato, M. Bozzi, and L. Perregrini, "Substrate integrated folded waveguide filter with out-of-band rejection controlled by resonant-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 25, No. 4, 214-216, Apr. 2015.
doi:10.1109/LMWC.2015.2400927 Google Scholar
16. Ji, Q., Y.-S. Xu, C. Chen, L. Zhou, and Y.-F. Zhang, "Cavities with four equivalent magnetic side walls in composite planar multilayered and substrate integrated waveguide structures," 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, Sept. 2020. Google Scholar
17. Porath, R., "Theory of miniaturized shorting-post microstrip antennas," IEEE Trans. Antennas Propag., Vol. 48, No. 1, 41-47, Jan. 2000.
doi:10.1109/8.827384 Google Scholar
18. Sun, M.-M., Y.-S. Xu, C. Chen, and L. Zhou, "A compact bandpass filter with high selectivity and wide stopband," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, May 2023. Google Scholar
19. Zhang, Y.-F., Y.-S. Xu, C. Chen, and L. Zhou, "Miniaturized single band filter with wide outer-band rejection at higher frequencies," 2021 Photonics & Electromagnetics Research Symposium (PIERS), 1520-1526, Hangzhou, China, Nov. 21-25, 2021. Google Scholar
20. Amari, S. and U. Rosenberg, "Characteristics of cross (bypass) coupling through higher/lower order modes and their applications in elliptic filter design," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 10, 3135-3141, Oct. 2005.
doi:10.1109/TMTT.2005.855359 Google Scholar
21. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, 2nd Ed., John Wiley & Sons Inc., Hoboken, NJ, USA, 2011.
22. Kim, P. and Y. Jeong, "Compact and wide stopband substrate integrated waveguide bandpass filter using mixed quarter- and one-eighth modes cavities," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 1, 16-19, Jan. 2020.
doi:10.1109/LMWC.2019.2954603 Google Scholar
23. Shi, Y., K. Zhou, C. Zhou, and W. Wu, "Compact QMSIW quasi-elliptic filter based on a novel electric coupling structure," Electron. Lett., Vol. 53, No. 23, 1528-1530, Nov. 2017.
doi:10.1049/el.2017.3367 Google Scholar
24. Pelluri, S. and M. V. Kartikeyan, "Compact QMSIW bandpass filter using composite right/left-handed transmission line in grounded coplanar waveguide," Int. J. RF Microw. Comput.-Aided Eng., Vol. 28, No. 9, Nov. 2018. Google Scholar
25. Huang, X.-L., L. Zhou, M. Volkel, A. Hagelauer, J.-F. Mao, R. Weigel, "Design of a novel quarter-mode substrate-integrated waveguide filter with multiple transmission zeros and higher mode suppressions," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 12, 5573-5584, Dec. 2018.
doi:10.1109/TMTT.2018.2879087 Google Scholar