1. Zhang, Y. and S. Ula, "Comparison and evaluation of three main types of wind turbines," 2008 IEEE/PES Transmission and Distribution Conference and Exposition, 1-6, IEEE, 2008. Google Scholar
2. Shen, Y. W., J. Zhang, Y. Y. Chen, A. Pi, and T. Cui, "Electromagnetic transient model and parameters identification of PMSG-based wind farm," 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), 72-77, IEEE, 2019. Google Scholar
3. Liu, J., H. Nian, J. Li, et al. "Sensorless control of PMSG for wind turbines based on the on-line parameter identification," International Conference on Electrical Machines and Systems, 1-6, IEEE, 2009. Google Scholar
4. Huy Anh, H. P., P. Quoc Khanh, and C. Van Kien, "Advanced PMSM machine parameter identification using modified jaya algorithm," 2019 International Conference on System Science and Engineering (ICSSE), 445-450, 2019.
doi:10.1109/ICSSE.2019.8823434 Google Scholar
5. Liu, H., S. Chen, and C. Hui, "The parameters identification of PMSM based on model reference adaptive," 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), 687-689, 2012. Google Scholar
6. Zhang, Y., Y. Bi, and S. Wang, "Parameter identification of permanent magnet synchronous motor based on extended Kalman filter and gradient correction," 2020 IEEE International Conference on Mechatronics and Automation (ICMA), 718-722, 2020.
doi:10.1109/ICMA49215.2020.9233766 Google Scholar
7. Wang, Q., G. Zhang, G. Wang, C. Li, and D. Xu, "Offline parameter self-learning method for general-purpose PMSM drives with estimation error compensation," IEEE Transactions on Power Electronics, Vol. 11, No. 34, 11103-11115, Nov. 2019. Google Scholar
8. Wang, Q., G. Wang, S. Liu, G. Zhang, and D. Xu, "An inverter-nonlinearity-immune offline inductance identification method for PMSM drives based on equivalent impedance model," IEEE Transactions on Power Electronics , Vol. 37, No. 6, 7100-7112, Jun. 2022.
doi:10.1109/TPEL.2021.3138886 Google Scholar
9. Perera, A. and R. Nilsen, "Recursive prediction error gradient-based algorithms and framework to identify PMSM parameters online," IEEE Transactions on Industry Applications, Vol. 59, No. 2, 1788-1799, Mar.-Apr. 2023.
doi:10.1109/TIA.2022.3219041 Google Scholar
10. Ma, X. and C. Bi, "A technology for online parameter identification of permanent magnet synchronous motor," CES Transactions on Electrical Machines and Systems, Vol. 4, No. 3, 237-242, Sept. 2020.
doi:10.30941/CESTEMS.2020.00029 Google Scholar
11. Sun, P., Q. Ge, B. Zhang, and X. Wang, "Sensorless control technique of PMSM based on RLS on-line parameter identification," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 1670-1673, 2018.
doi:10.23919/ICEMS.2018.8549482 Google Scholar
12. She, Z., J. Liu, Q. Liang, and W. Zou, "Identification for PMSM rotor speed based on optimized extended Kalman filter and load torque observer," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 1-2, 2020. Google Scholar
13. Li, M., K. Lv, C. Wen, Q. Zhao, X. Zhao, and X. Wang, "Sensorless control of permanent magnet synchronous linear motor based on sliding mode variable structure MRAS flux observation," Progress In Electromagnetics Research Letters, Vol. 101, 89-97, 2021.
doi:10.2528/PIERL21101401 Google Scholar
14. Zhang, J., J. Song, C. Su, J. Hu, and Q. Wang, "Parameter identification of HVDC transmission system model based on intelligent optimization algorithm," 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), 643-647, 2021. Google Scholar
15. Zhang, Z., Z. Chen, S. Liu, and F. Dong, "Parameter identification of Anand constitutive models for SAC305 using the intelligent optimization algorithm," 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), 133-137, 2019.
doi:10.1109/EPTC47984.2019.9026663 Google Scholar
16. Lv, J., F. Liu, and Y. Ren, "Fuzzy identification of nonlinear dynamic system based on input variable selection and particle swarm optimization parameter optimization," IEEE Access, Vol. 8, 220557-220569, 2020. Google Scholar
17. Ortombina, L., D. Pasqualotto, F. Tinazzi, et al. "Magnetic model identification of synchronous motors considering speed and load transients," IEEE Transactions on Industry Applications, Vol. 56, No. 5, 4945-4954, 2020.
doi:10.1109/TIA.2020.3003555 Google Scholar
18. Liu, K. and Z. Q. Zhu, "Position-offset-based parameter estimation using the adaline NN for condition monitoring of permanent-magnet synchronous machines," IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, 2372-2383, 2015.
doi:10.1109/TIE.2014.2360145 Google Scholar
19. Wei, J., Y. Yu, and D. Cai, "Identification of uncertain incommensurate fractional-order chaotic systems using an improved quantum-behaved particle swarm optimization algorithm," J. Comput. Nonlinear Dyn., Vol. 13, No. 5, 1-23, Mar. 2018. Google Scholar
20. Avdeev, A. and O. Osipov, "PMSM identification using genetic algorithm," 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED), 1-4, Moscow, Russia, 2019. Google Scholar
21. Liu, K. and Z. Q. Zhu, "Quantum genetic algorithm-based parameter estimation of PMSM under variable speed control accounting for system identifiability and VSI nonlinearity," IEEE Transactions on Industrial Electronics, Vol. 62, No. 4, 2363-2371, 2015.
doi:10.1109/TIE.2014.2351774 Google Scholar
22. Liu, Z.-H., H.-L. Wei, Q.-C. Zhong, K. Liu, X.-S. Xiao, and L.-H. Wu, "Parameter estimation for VSI-fed PMSM based on a dynamic PSO with learning strategies," IEEE Transactions on Power Electronics, Vol. 32, No. 4, 3154-3165, Apr. 2017.
doi:10.1109/TPEL.2016.2572186 Google Scholar
23. Kim, H.-W., M.-J. Youn, K.-Y. Cho, and H.-S. Kim, "Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty," IEEE Transactions on Control Systems Technology, Vol. 14, No. 4, 589-601, Jul. 2006. Google Scholar
24. Liu, K. and Z. Q. Zhu, "Online estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives," IEEE Transactions on Power Electronics, Vol. 29, No. 1, 418-427, 2013.
doi:10.1109/TPEL.2013.2252024 Google Scholar
25. Liu, Z. H., H. L. Wei, Q. C. Zhong, et al. "Parameter estimation for VSI-fed PMSM based on a dynamic PSO with learning strategies," IEEE Transactions on Power Electronics, Vol. 32, No. 4, 3154-3165, 2016.
doi:10.1109/TPEL.2016.2572186 Google Scholar
26. Kim, S. J., H. W. Lee, K. S. Kim, et al. "Torque ripple improvement for interior permanent magnet synchronous motor considering parameters with magnetic saturation," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4720-4723, 2009.
doi:10.1109/TMAG.2009.2022955 Google Scholar
27. Accetta, A., F. Alonge, M. Cirrincione, et al. "GA-based off-line parameter estimation of the induction motor model including magnetic saturation and iron losses," IEEE Open Journal of Industry Applications, Vol. 1, 135-147, 2020.
doi:10.1109/OJIA.2020.3024567 Google Scholar
28. Wang, M., W. Chang, H. Yang, et al. "Sensorless vector control of permanent magnet synchronous motor based on improved hybrid genetic algorithm," 2019 4th International Conference on Control and Robotics Engineering (ICCRE), 21-26, IEEE, 2019.
doi:10.1109/ICCRE.2019.8724180 Google Scholar