1. Marcus, M. and B. Pattan, "Millimeter wave propagation: Spectrum management implications," IEEE Microwave Magazine, Vol. 6, No. 2, 54-62, Jun. 2005, doi: 10.1109/mmw.2005.1491267.
doi:10.1109/MMW.2005.1491267 Google Scholar
2. GSM Association "The 6 GHz ecosystem: Demand drives scale,", Aug. 2022. Accessed: Jan. 17, 2023. [Online]. Available: https://www.gsma.com/spectrum/wp-content/uploads/2022/08/6-GHz-IMT-Ecosystem.pdf. Google Scholar
3. Ansari, J. A., K. Kumari, A. Singh, and A. Mishra, "Ultra-wideband co-planer microstrip patch antenna for wireless applications," Wireless Personal Communications, Vol. 69, No. 4, 1365-1378, May 2012, doi: 10.1007/s11277-012-0638-y.
doi:10.1007/s11277-012-0638-y Google Scholar
4. Bakariya, P. S., S. Dwari, M. Sarkar, and M. K. Mandal, "Proximity-coupled multiband microstrip antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 646-649, 2015, doi: 10.1109/lawp.2014.2376693.
doi:10.1109/LAWP.2014.2376693 Google Scholar
5. Ketavath, K. N., "Enhancement of gain with coplanar concentric ring patch antenna," Wireless Personal Communications, Vol. 108, No. 3, 1447-1457, May 2019, doi: 10.1007/s11277-019-06478-9.
doi:10.1007/s11277-019-06478-9 Google Scholar
6. Kanaujia, B. K. and B. R. Vishvakarma, "Design considerations for the development of the annular ring microstrip antenna," International Journal of Electronics, Vol. 89, No. 8, 665-677, Aug. 2002, doi: 10.1080/0020721021000057526.
doi:10.1080/0020721021000057526 Google Scholar
7. Singh, A. K., R. K. Gangwar, and B. K. Kanaujia, "Circularly polarized annular ring microstrip antenna for high gain application," Electromagnetics, Vol. 36, No. 6, 379-391, Aug. 2016, doi: 10.1080/02726343.2016.1207801.
doi:10.1080/02726343.2016.1207801 Google Scholar
8. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Deedham, MA, USA, 2002.
9. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, USA, 1980.
10. Simons, R. N., Coplanar Waveguide Circuits, Components, and Systems, Vol. 152, Wiley-IEEE Press, 2002, doi: 10.1604/978047122475410.1002/0471224758.
11. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Edition, Wiley, 2016.
12. Terman, F. E., Electronic and Radio Engineering, McGraw-Hill Book Company, Inc., USA, 2003, doi: 10.1604/9780758184740.
13. Singh, A., K. Shet, D. Prasad, A. K. Pandey, and M. Aneesh, "A review: Circuit theory of microstrip antennas for dual-, multi-, and ultra-widebands," Modulation in Electronics and Telecommunications, Mar. 2020, doi: 10.5772/intechopen.91365. Google Scholar
14. Singh, A., J. A. Ansari, Kamakshi, M. Aneesh, and S. S. Sayeed, "L-strip proximity fed gap coupled compact semi-circular disk patch antenna," Alexandria Engineering Journal, Vol. 53, No. 1, 61-67, Mar. 2014, doi: 10.1016/j.aej.2013.12.001.
doi:10.1016/j.aej.2013.12.001 Google Scholar
15. Singh, A., M. Aneesh, and J. A. Ansari, "Analysis of microstrip line fed patch antenna for wireless communications," Open Engineering, Vol. 7, No. 1, 279-286, Nov. 2017, doi: 10.1515/eng-2017-0034.
doi:10.1515/eng-2017-0034 Google Scholar
16. Ez-Zaki, F., K. A. Belaid, S. Ahmad, et al. "Circuit modelling of broadband antenna using vector fitting and foster form approaches for IoT applications," Electronics, Vol. 11, No. 22, 3724, Nov. 2022, doi: 10.3390/electronics11223724.
doi:10.3390/electronics11223724 Google Scholar
17. Shen, L. C., "Analysis of a circular-disc printed-circuit antenna," Proceedings of the Institution of Electrical Engineers, Vol. 126, No. 12, 1220, 1979, doi: 10.1049/piee.1979.0210. Google Scholar
18. Bhattacharyya, A. and R. Garg, "Input impedance of annular ring microstrip antenna using circuit theory approach," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 4, 369-374, Apr. 1985, doi: 10.1109/tap.1985.1143584.
doi:10.1109/TAP.1985.1143584 Google Scholar
19. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "A circularly polarized antenna for dual band operation at 2.45 GHz and 5.10 GHz," Progress In Electromagnetics Research C, Vol. 74, 1-8, 2017.
doi:10.2528/PIERC17030106 Google Scholar
20. Renuga Kanni, V. and R. Brinda, "Design of high gain microstrip antenna for vehicle to vehicle communication using genetic algorithm," Progress In Electromagnetics Research M, Vol. 81, 167-179, 2019.
doi:10.2528/PIERM19040505 Google Scholar
21. Singhal, H., S. Ashwin, V. Sharma, J. Prajapati, and M. D. Upadhayay, "High gain hexagonal patch antenna for V2V communication," 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), 687-691, Noida, India, 2020, doi: 10.1109/SPIN48934.2020.9071270. Google Scholar
22. Maddio, S., G. Pelosi, M. Righini, and S. Selleri, "A slotted patch antenna with enhanced gain pattern for automotive applications," Progress In Electromagnetics Research Letters, Vol. 95, 135-141, 2021.
doi:10.2528/PIERL20110103 Google Scholar
23. Woo, D. S., "A triple band C-shape monopole antenna for vehicle communication application," Progress In Electromagnetics Research C, Vol. 121, 97-106, 2022.
doi:10.2528/PIERC22060202 Google Scholar