1. Fang, L. and R. M. Henderson, "Orbital angular momentum uniform circular antenna array design and optimization-based array factor," 2019 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), 1-4, Waco, TX, USA, 2019. Google Scholar
2. Akhtar, M. W., S. A. Hassan, R. Ghaffar, H. Jung, S. Garg, and M. S. Hossain, "The shift to 6G communications: Vision and requirements," Human-centric Computing and Information Sciences, Vol. 10, No. 1, 1-27, 2020.
doi:10.1186/s13673-020-00258-2 Google Scholar
3. Alamayreh, A. and N. Qasem, "Vortex beam generation in microwave band," Progress In Electromagnetics Research C, Vol. 107, 49-63, 2021.
doi:10.2528/PIERC20082006 Google Scholar
4. Allen, L., M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Physical Review A, Vol. 45, No. 11, 8185-8189, 1992.
doi:10.1103/PhysRevA.45.8185 Google Scholar
5. Qasem, N., A. Alamayreh, and J. Rahhal, "Beam steering using OAM waves generated by a concentric circular loop antenna array," Wireless Networks, Vol. 27, No. 4, 2431-2440, 2021.
doi:10.1007/s11276-021-02589-z Google Scholar
6. Alkhawatrah, M., A. Alamayreh, and N. Qasem, "Cooperative relay networks based on the OAM technique for 5G applications," Computer Systems Science & Engineering, Vol. 44, No. 3, 1911-1919, 2023.
doi:10.32604/csse.2023.028614 Google Scholar
7. Alamayreh, A., N. Qasem, and J. S. Rahhal, "General configuration MIMO system with arbitrary OAM," Electromagnetics, Vol. 40, No. 5, 343-353, 2020.
doi:10.1080/02726343.2020.1780378 Google Scholar
8. Liu, K., Y. Cheng, Y. Gao, X. Li, Y. Qin, and H. Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, 2017.
doi:10.1063/1.4981253 Google Scholar
9. Yang, Y., K. Guo, F. Shen, Y. Gong, and Z. Guo, "Generating multiple OAM based on a nested dual-arm spiral antenna," IEEE Access, Vol. 7, 138541-138547, 2019.
doi:10.1109/ACCESS.2019.2942601 Google Scholar
10. Noor, S. K., M. N. M. Yasin, A. M. Ismail, M. N. Osman, P. J. Soh, N. Ramli, and A. H. Rambe, "A review of orbital angular momentum vortex waves for the next generation wireless communications," IEEE Access, Vol. 10, 89465-89484, 2022.
doi:10.1109/ACCESS.2022.3197653 Google Scholar
11. Wang, L., W. Park, C. Yang, H.-D. Bruns, D. G. Kam, and C. Schuster, "Wireless communication of radio waves carrying orbital angular momentum (OAM) above an infinite ground plane," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 2257-2264, 2020.
doi:10.1109/TEMC.2020.2965656 Google Scholar
12. Yao, H., H. Kumar, T. Ei, S. Sharma, R. Henderson, S. Ashrafi, D. MacFarlane, Z. Zhao, Y. Yan, and A. Willner, "Experimental demonstration of a dual-channel E-band communication link using commercial impulse radios with orbital angular momentum multiplexing," 2017 IEEE Radio and Wireless Symposium (RWS), 51-54, Phoenix, AZ, USA, 2017. Google Scholar
13. Fang, L., H. Yao, and R. M. Henderson, "OAM antenna arrays at E-band," 2017 IEEE MTT-S International Microwave Symposium (IMS), 658-661, Honololu, HI, USA, 2017. Google Scholar
14. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, No. 2, 139-150, 2014.
doi:10.1038/nmat3839 Google Scholar
15. Wang, R., M. Wang, Y. Zhang, D. Liao, and L. Jing, "Generation of orbital angular momentum multiplexing millimeter waves based on a circular traveling wave antenna," Optics Express, Vol. 31, No. 3, 5131-5139, 2023.
doi:10.1364/OE.483629 Google Scholar
16. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientic Reports, Vol. 5, No. 1, 10148, 2015.
doi:10.1038/srep10148 Google Scholar
17. Sideeq, M. M. M. and N. Qasem, "Smart wall based on active frequency selective wallpaper," ZANCO Journal of Pure and Applied Sciences, Vol. 28, No. 2, 1-6, 2016. Google Scholar
18. Sharma, T., A. Chehri, and P. Fortier, "Reconfigurable intelligent surfaces for 5G and beyond wireless communications: A comprehensive survey," Energies, Vol. 14, No. 24, 8219, 2021.
doi:10.3390/en14248219 Google Scholar
19. Liu, Y., X. Liu, X. Mu, T. Hou, J. Xu, M. Di Renzo, and N. Al-Dhahir, "Reconfigurable intelligent surfaces: principles and opportunities," IEEE Communications Surveys & Tutorials, Vol. 23, No. 3, 1546-1577, 2021.
doi:10.1109/COMST.2021.3077737 Google Scholar
20. Abeywickrama, S., R. Zhang, Q. Wu, and C. Yuen, "Intelligent reflecting surface: Practical phase shift model and beamforming optimization," IEEE Transactions on Communications, Vol. 68, No. 9, 5849-5863, 2020.
doi:10.1109/TCOMM.2020.3001125 Google Scholar
21. Marhoon, H. M., N. Qasem, N. B. Mohamad, and A. R. Ibrahim, "Design and simulation of a compact metal-graphene frequency reconfigurable microstrip patch antenna with FSS superstrate for 5G applications," International Journal on Engineering Applications (IREA), Vol. 10, No. 3, 193-201, 2022.
doi:10.15866/irea.v10i3.21752 Google Scholar
22. Wu, Q., S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent reflecting surface-aided wireless communications: A tutorial," IEEE Transactions on Communications, Vol. 69, No. 5, 3313-3351, 2021.
doi:10.1109/TCOMM.2021.3051897 Google Scholar
23. Gong, S., X. Lu, D. T. Hoang, D. Niyato, L. Shu, D. I. Kim, and Y. C. Liang, "Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey," IEEE Communications Surveys & Tutorials, Vol. 22, No. 4, 2283-2314, 2020.
doi:10.1109/COMST.2020.3004197 Google Scholar
24. Yang, Z., Y. Hu, Z. Zhang, W. Xu, C. Zhong, and K.-K. Wong, "Reconfigurable intelligent surface based orbital angular momentum: Architecture, opportunities, and challenges," IEEE Wireless Communications, Vol. 28, No. 6, 132-137, 2021.
doi:10.1109/MWC.001.2100223 Google Scholar
25. Wu, Q. and R. Zhang, "Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming," IEEE Transactions on Wireless Communications, Vol. 18, No. 11, 5394-5409, Nov. 2019.
doi:10.1109/TWC.2019.2936025 Google Scholar
26. Han, Y., W. Tang, S. Jin, C.-K.Wen, and X. Ma, "Large intelligent surface assisted wireless communication exploiting statistical CSI," IEEE Transactions on Vehicular Technology, Vol. 68, No. 8, 8238-8242, 2019.
doi:10.1109/TVT.2019.2923997 Google Scholar
27. Cui, M., G. Zhang, and R. Zhang, "Secure wireless communication via intelligent reflecting surface," IEEE Wireless Communications Letters, Vol. 8, No. 5, 1410-1414, 2019.
doi:10.1109/LWC.2019.2919685 Google Scholar
28. Li, Y., M. Jiang, G. Zhang, and M. Cui, "Achievable rate maximization for intelligent reflecting surface-assisted orbital angular momentum-based communication systems," IEEE Transactions on Vehicular Technology, Vol. 70, No. 7, 7277-7282, 2021.
doi:10.1109/TVT.2021.3089021 Google Scholar
29. Qayyum, A. and S. Y. Shin, "Capacity analysis Of IRS Assisted RSMA-OAM for next generation of wireless communication," Proceedings of the Korean Telecommunications Society Conference, 79-80, Seoul, South Korea, 2023. Google Scholar
30. Ono, K., K. Yoshii, M. Saito, Z. Pan, J. Liu, and S. Shimamoto, "Performance analysis of intelligent reflecting surface-assisted orbital angular momentum-based communication systems," 2022 24th International Conference on Advanced Communication Technology (ICACT), 7-12, PyeongChang, Republic of Korea, 2022. Google Scholar
31. Lee, H. Y. and S. Y. Shin, "Reconfigurable intelligent surface assisted multi-user orbital angular momentum communications," 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), 1597-600, Jeju Island, Republic of Korea, Oct. 2022. Google Scholar
32. Wang, Y., N. Cyprien, T. Hu, and X. Liao, "IRS aided OAM-MIMO communication," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, Taipei, Taiwan, 2021. Google Scholar
33. Feng, Q., X. Kong, M. Shan, Y. Lin, L. Li, and T. J. Cui, "Multi-orbital-angular-momentum-mode vortex wave multiplexing and demultiplexing with shared-aperture reflective metasurfaces," Physical Review Applied, Vol. 17, No. 3, 2022.
doi:10.1103/PhysRevApplied.17.034017 Google Scholar
34. Ali, A., M. Khalily, D. Serghiou, and R. Tafazolli, "Reflective metasurface with steered OAM beams for THz communications," IEEE Access, Vol. 11, 12394-12401, 2023.
doi:10.1109/ACCESS.2023.3242647 Google Scholar
35. Chung, H., D. Kim, E. Choi, and J. Lee, "E-band metasurface-based orbital angular momentum multiplexing and demultiplexing," Laser & Photonics Reviews, Vol. 16, No. 6, 2100456, 2022.
doi:10.1002/lpor.202100456 Google Scholar
36. Grbic, A. and R. Merlin, "Near-field focusing plates and their design," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 10, 3159-3165, 2008.
doi:10.1109/TAP.2008.929436 Google Scholar
37. Peatross, J. and M. Ware, "Physics of light and optics," Brigham Young University, 2015. Google Scholar
38. Cai, W., R. Liu, Y. Liu, M. Li, and Q. Liu, "Intelligent reflecting surface assisted multi-cell multi-band wireless networks," 2021 IEEE Wireless Communications and Networking Conference (WCNC), 1-6, Nanjing, China, 2021. Google Scholar