1. Gouesbet, G. and G. Grehan, Generalized Lorenz-Mie Theories, Springer, 2011.
doi:10.1007/978-3-642-17194-9
2. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Annalen der Physik, Vol. 330, 377-445, 1908.
doi:10.1002/andp.19083300302 Google Scholar
3. Liang, C. and Y. T. Lo, "Scattering by two spheres," Radio Science, Vol. 2, 1481-1495, 1967.
doi:10.1002/rds19672121481 Google Scholar
4. Bruning, J. and Y. T. Lo, "Multiple scattering of EM waves by spheres. Part I --- Multipole expansion and ray-optical solutions," IEEE Transactions on Antennas and Propagation, Vol. 19, 378-390, 1971.
doi:10.1109/TAP.1971.1139944 Google Scholar
5. Mackowski, D. W., "Analysis of radiative scattering for multiple sphere configurations," Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, Vol. 433, 599-614, 1991. Google Scholar
6. Mackowski, D. W. and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," JOSA A, Vol. 13, 2266-2278, 1996.
doi:10.1364/JOSAA.13.002266 Google Scholar
7. Xu, Y.-L. and B. A. S. Gustafson, "A generalized multiparticle Mie-solution: Further experimental verification," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 70, 395-419, 2001.
doi:10.1016/S0022-4073(01)00019-X Google Scholar
8. Xu, Y.-L. and B. A. S. Gustafson, "Experimental and theoretical results of light scattering by aggregates of spheres," Applied Optics, Vol. 36, 8026-8030, 1997.
doi:10.1364/AO.36.008026 Google Scholar
9. Xu, Y.-L., "Electromagnetic scattering by an aggregate of spheres: Asymmetry parameter," Physics Letters A, Vol. 249, 30-36, 1998.
doi:10.1016/S0375-9601(98)00708-7 Google Scholar
10. Xu, Y.-L., "Electromagnetic scattering by an aggregate of spheres: Errata," Applied Optics, Vol. 37, 6494, 1998.
doi:10.1364/AO.37.006494 Google Scholar
11. Xu, Y.-L. and R. T. Wang, "Electromagnetic scattering by an aggregate of spheres: Theoretical and experimental study of the amplitude scattering matrix," Physical Review E, Vol. 58, 3931-3948, 1998.
doi:10.1103/PhysRevE.58.3931 Google Scholar
12. Xu, Y.-L., "Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories," Journal of Computational Physics, Vol. 139, 137-165, 1998.
doi:10.1006/jcph.1997.5867 Google Scholar
13. Xu, Y.-L., B. A. S. Gustafson, F. Giovane, J. Blum, and S. Tehranian, "Calculation of the heat-source function in photophoresis of aggregated spheres," Physical Review E, Vol. 60, 2347-2365, 1999.
doi:10.1103/PhysRevE.60.2347 Google Scholar
14. Jia, R., X. Zhang, F. Cui, G. Chen, H. Li, H. Peng, and S. Pei, "Machine-learning-based computationally efficient particle size distribution retrieval from bulk optical properties," Applied Optics, Vol. 59, 7284-7291, 2020.
doi:10.1364/AO.398364 Google Scholar
15. Mitchell, M., "An Introduction to Genetic Algorithms," MIT Press, 1998. Google Scholar
16. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, 989, Addison-Wessley Publishing Co., Inc., 1989.
17. Adams, B. M., W. J. Bohnhoff, K. R. Dalbey, et al. "Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 6.15 user's manual," Sandia Technical Report SAND2020-12495, November 2021. Google Scholar
18. Murata, T. and H. Ishibuchi, "MOGA: Multi-objective genetic algorithms," Proceedings of 1995 IEEE International Conference on Evolutionary Computation, Vol. 1, 289, 1995.
doi:10.1109/ICEC.1995.489161 Google Scholar
19. Eddy, J. and K. Lewis, "Effective generation of pareto sets using genetic programming," Proceedings of the ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 2B, 783-791, 2001. Google Scholar
20. Eddy, J., "JEGA V 2.3. computer software,", USDOE, https://www.osti.gov//servlets/purl/1231173, Mar. 25, 2009. Google Scholar
21. Ng, W. C., T. L. Lim, and T. L. Yoon, "Investigation of melting dynamics of Hafnium clusters," Journal of Chemical Information and Modeling, Vol. 57, 517-528, 2017.
doi:10.1021/acs.jcim.6b00553 Google Scholar
22. Ingber, L., "Simulated annealing: Practice versus theory," Mathematical and Computer Modelling, Vol. 18, 29-57, 1993.
doi:10.1016/0895-7177(93)90204-C Google Scholar
23. Wales, D. J. and J. P. K. Doye, "Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms," J. Phys. Chem. A, Vol. 101, 5111-5116, 1997.
doi:10.1021/jp970984n Google Scholar
24. Hsu, P. J. and S. K. Lai, "Structures of bimetallic clusters," The Journal of Chemical Physics, Vol. 124, 044711, 2006.
doi:10.1063/1.2147159 Google Scholar