1. Shi, Y. and H. J. Wang, "Dual-ridge gap waveguide-based antenna with diverse beam capabilities," IEEE Open Journal of Antennas and Propagation, Vol. 3, 774-782, 2022, doi: 10.1109/OJAP.2022.3190225.
doi:10.1109/OJAP.2022.3190225 Google Scholar
2. Chhasatia, N., J. Chaudhari, and A. Patel, "Ridge gap waveguide based band pass filter for Ku-band application," IOP Conference Series: Materials Science and Engineering, Vol. 120, No. 1, 012011, 2021, doi: 10.1088/1757-899X/1206/1/012011.
doi:10.1088/1757-899X/1206/1/012011 Google Scholar
3. Pizarro, F., C. Sanchez-Cabello, J. L. Vazquez-Roy, and E. Rajo-Iglesias, "Considerations of impedance sensitivity and losses in designing inverted microstrip gap waveguides," AEU Int. J. Electron. Commun., Vol. 124, 153353, 2020.
doi:10.1016/j.aeue.2020.153353 Google Scholar
4. Huang, H., Y. Wu, W. Wang, W. Feng, and Y. Shi, "Analysis of the propagation constant of a ridge gap waveguide and its application of dual-band unequal couplers," IEEE Transactions on Plasma Science, Vol. 48, No. 12, 4163-4170, Dec. 2020, doi: 10.1109/TPS.2020.3034669.
doi:10.1109/TPS.2020.3034669 Google Scholar
5. Thaher, R. H. and S. H. M. jassim, "Design of dual band elliptical microstrip antenna for satellite communication," IOP Conference Series: Materials Science and Engineering, Vol. 928, 022066, 2020.
doi:10.1088/1757-899X/928/2/022066 Google Scholar
6. Zhang, T., L. Chen, S. M. Moghaddam, A. Uz Zaman, and J. Yang, "Wideband dual-polarized array antenna on dielectric-based inverted microstrip gap waveguide," Proceedings of the 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-3, Krakow, Poland, March 31-April 5, 2019. Google Scholar
7. Birgermajer, S., N. Janković, V. Crnojevic-Bengin, and V. Radonić, "Millimeter-wave dual-mode filters realized in microstrip-ridge gap waveguide technology," J. Infrared Millim. Terahertz Waves, Vol. 40, 92-107, 2019.
doi:10.1007/s10762-018-0550-y Google Scholar
8. Wu, T., T. Zhang, and J. Huang, "Design of Ku-band size-reduced waveguide slot filter antenna loaded with metal ridges," Journal of Physics: Conference Series, Vol. 1325, No. 1, 012199, 2019, doi: 10.1088/1742-6596/1325/1/012199.
doi:10.1088/1742-6596/1325/1/012199 Google Scholar
9. Ali, M. M., S. I. Shams, and A. R. Sebak, "Low loss and ultra flat rectangular waveguide harmonic coupler," IEEE Access, Vol. 6, 38736-38744, 2018.
doi:10.1109/ACCESS.2018.2854189 Google Scholar
10. Liu, J., J. Yang, and A. U. Zaman, "Study of dielectric loss and conductor loss among microstrip, covered microstrip and inverted microstrip gap waveguide utilizing variational method in millimeter waves," Proceedings of the 2018 International Symposium on Antennas and Propagation (ISAP), 1-2, Busan, Korea, October 23-26, 2018. Google Scholar
11. Rajo-Iglesias, E., M. Ferrando-Rocher, and A. U. Zaman, "Gap waveguide technology for millimeter-wave antenna systems," IEEE Commun. Mag., Vol. 56, 14-20, 2018.
doi:10.1109/MCOM.2018.1700998 Google Scholar
12. Afolayan, B. O., T. J. Afullo, and A. Alonge, "Subtropical rain attenuation statistics on 12.6 GHz Ku-band satellite link using synthetic storm technique," SAIEE Africa Research Journal, Vol. 109, No. 4, 230-236, Dec. 2018, doi: 10.23919/SAIEE.2018.8538336.
doi:10.23919/SAIEE.2018.8538336 Google Scholar
13. Muchhal, N., A. Chakraborty, M. Vishwakarma, and S. Srivastava, "Slotted folded substrate integrated waveguide band pass filter with enhanced bandwidth for Ku/k band applications," Progress In Electromagnetics Research M, Vol. 70, 51-60, 2018, doi: 10.2528/PIERM18041804.
doi:10.2528/PIERM18041804 Google Scholar
14. Liu, J., A. Vosoogh, A. U. Zaman, and J. Yang, "Design and fabrication of a high-gain 60-GHz cavity-backed slot antenna array fed by inverted microstrip gap waveguide," IEEE Trans. Antennas Propag., Vol. 65, 2117-2122, 2017.
doi:10.1109/TAP.2017.2670509 Google Scholar
15. Shams, S. I. and A. A. Kishk, "Design of 3-dB hybrid coupler based on RGW technology," IEEE Trans. Microw. Theory. Tech., Vol. 65, 3849-3855, October 2017. Google Scholar
16. Kandonmez, S, O. Kolancioglu, D. H. Boyaci, M. E. Koca, and T. Imeci, "High gain perturbed pentagonal shaped diamond slotted patch antenna at 17.1 GHz," 2017 International Applied Computational Electromagnetics Society Symposium --- Italy (ACES), 1-2, Firenze, Italy, 2017. Google Scholar
17. Rajo-Iglesias, E. and A. A. Brazález, "5G antenna in inverted microstrip gap waveguide technology including a transition to microstrip," Proceedings of the 2016 International Symposium on Antennas and Propagation (ISAP), 1042-1043, Okinawa, Japan, October 24-28, 2016. Google Scholar
18. Kuralay, E. N., E. F. Uzun, O. Ates, Y. M. Sahin, and T. Imeci, "Perturbed hexagonal antenna at 14.7 GHz," 2016 IEEE/ACES International Conference on Wireless Information Technology and Systems (ICWITS) and Applied Computational Electr, 1-2, Honolulu, HI, USA, 2016. Google Scholar
19. Huang, F., J. Zhou, and W. Hong, "Ku band continuously tunable circular cavity SIW filter with one parameter," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 270-272, April 2016, doi: 10.1109/LMWC.2016.2537785.
doi:10.1109/LMWC.2016.2537785 Google Scholar
20. Patel, A., Y. Kosta, A. Vala, and R. Gosai, "Design and performance analysis of metallic posts coupled SIW-based multiband bandpass and bandstop filter," Microwave and Optical Technology Letters, Vol. 57, 1-5, 2015, doi: 10.1002/mop.29105. Google Scholar
21. Rhbanou, A., S. Mohamed, and S. Bri, "Design of K-band substrate integrated waveguide band-pass filter with high rejection," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 14, 155-169, 2015, doi: 10.1590/2179-10742015v14i2473.
doi:10.1590/2179-10742015v14i2473 Google Scholar
22. Brazález, A. A., E. Rajo-Iglesias, J. L. Vázquez-Roy, A. Vosoogh, and P. Kildal, "Design and validation of microstrip gap waveguides and their transitions to rectangular waveguide, for millimeter-wave applications," IEEE Trans. Microw. Theory Technology, Vol. 63, 4035-4050, 2015.
doi:10.1109/TMTT.2015.2495141 Google Scholar
23. Sanchez-Cabello, C. and E. Rajo-Iglesias, "Optimized self-diplexed antenna in gap waveguide technology," Proceedings of the 2015 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, 460-461, Vancouver, BC, Canada, July 19-24, 2015. Google Scholar
24. Pucci, E., "Gap waveguide technology for millimeter wave applications and integration with antennas,", Ph.D. dissertation, 2013. Google Scholar
25. Kildal, P., A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression," IET Microw. Antennas Propag., Vol. 5, 262-270, 2011.
doi:10.1049/iet-map.2010.0089 Google Scholar
26. Alfonso, E. and et al, "New waveguide technology for antennas and circuits," Waves Year, Vol. 3, 65-75, 2011. Google Scholar
27. Rajo-Iglesias, E., A. U. Zaman, and P. Kildal, "Parallel plate cavity mode suppression in microstrip circuit packages using a lid of nails," IEEE Microw. Wirel. Components Lett., Vol. 20, 31-33, 2010.
doi:10.1109/LMWC.2009.2035960 Google Scholar
28. Zhang, Q., Y. Dong, and J. Cao, "Dual-mode bandpass filter using microstrip SIR at Ka band," Proceedings of the 2009 Asia Pacific Microwave Conference, 1401-1404, Singapore, December 7-10, 2009. Google Scholar
29. Kildal, P. S., E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, "Local metamaterials-based waveguides in gaps between parallel metal plates," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 84-87, 2009.
doi:10.1109/LAWP.2008.2011147 Google Scholar
30. Kildal, P. S., "Three metamaterials-based gap waveguides between parallel metal plates for mm/submm waves," Proceedings of the Third European Conference on Antennas and Propagation, EuCAP, 28-32, 2009. Google Scholar
31. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. dissertation, 1999. Google Scholar