1. Sander, J., J. F. Eichner, E. Faust, and M. Steuer, "Rising variability in thunderstorm-related U.S. losses as a reflection of changes in large-scale thunderstorm forcing," Weather, 317-331, 2013. Google Scholar
2. Donat, M. G., A. L. Lowry, L. V. Alexander, P. A. O'Gorman, and N. Maher, "More extreme precipitation in the world's dry and wet regions," Nature Climate Change, Vol. 6, 508-513, 2016.
doi:10.1038/nclimate2941 Google Scholar
3. Stroeve, J., A. Barrett, M. Serreze, and A. Schweiger, "Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness," The Cryosphere, Vol. 8, 1839-1854, 2014.
doi:10.5194/tc-8-1839-2014 Google Scholar
4. Chen, I-C., J. Donald, Fahey, W. David, Hibbard, and K. Al, "Climate science special report: Fourth national climate assessment, Volume I," Ecological Research, 2017. Google Scholar
5. Wuebbles, D., D. R. Easterling, K. Hayhoe, T. Knutson, R. E. Kopp, J. P. Kossin, K. E. Kunkel, A. N. Legrande, C. Mears, and W., "Our globally changing climate. Chapter 1," Climate Science Special Report: Fourth National Climate Assessment, 2017. Google Scholar
6. Melillo, J. M., T. Richmond, and G. W. Yohe (eds.), Climate Change Impacts in the United States: The Third National Climate Assessment, Vol. 61, No. 12, 46-48, 2014.
doi:10.7930/J0Z31WJ2
7. Kiehl, J. T. and K. E. Trenberth, "Earth's annual global mean energy budget," Bulletin of the American Meteorological Society, Vol. 78, No. 2, 1997.
doi:10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2 2.0.CO;2' target='_blank'> Google Scholar
8. Crippa, M., E. Solazzo, D. Guizzardi, F. Monforti-Ferrario, and A. Leip, "Food systems are responsible for a third of global anthropogenic GHG emissions," Nature Food, Vol. 2, No. 3, 1-12, 2021.
doi:10.1038/s43016-021-00225-9 Google Scholar
9. Addington, O., Z.-C. Pongetti, T. Shia, R.-L. Gurney, K. R. Liang, J. Roest, G. He, L. Yung, Y. L. Sander, and P. Stanley, "Estimating nitrous oxide (N2O) emissions for the Los Angeles Megacity using mountaintop remote sensing observations," Remote Sensing of Environment: An Interdisciplinary Journal, Vol. 259, No. 1, 2021. Google Scholar
10. Link, M. S., "Part 7: Adult advanced cardiovascular life support: 2015 American heart association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care (Vol. 132, S444, 2015)," Circulation: An Official Journal of the American Heart Association, 2015. Google Scholar
11. Nunn, J. F. and M. Saklad, "Ventilation and end-tidal carbon dioxide tension a study during routine anaesthesia," Survey of Anesthesiology, Vol. 3, No. 3, 261-262, 1959. Google Scholar
12. Nam, H.-J., T. Sasaki, and N. Koshizaki, "Optical CO gas sensor using a cobalt oxide thin film prepared by pulsed laser deposition under various argon pressures," The Journal of Physical Chemistry B, Vol. 110, No. 46, 23081-23084, 2006.
doi:10.1021/jp063484f Google Scholar
13. Elwi, T. A. and W. J. Khudhayer, "A passive wireless gas sensor based on microstrip antenna with copper nanorods," Progress In Electromagnetics Research B, Vol. 55, 347-364, 2013.
doi:10.2528/PIERB13082002 Google Scholar
14. Hu, L., Research of quartz-enhanced photoacoustic and photothermal spectroscopy-based gas sensing technique, Jilin University, 2021.
15. Xing, Y., G. Wang, T. Zhang, F. Shen, L. Meng, L. Wang, F. Li, Y. Zhu, Y. Zheng, N. He, and S. He, "VOC detections with optical spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022.
doi:10.2528/PIER22033004 Google Scholar
16. Harren, F., "Laser-based trace gas detection within biology and human health science," Optical Instrumentation for Energy and Environmental Applications, 2014. Google Scholar
17. Ren, W., A. Farooq, D.F. Davidson, and R. K. Hanson, "CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm," Applied Physics, 2012.
doi:10.1007/s00339-011-6739-8 Google Scholar
18. Thaler, K. M., C. Berger, C. Leix, J. E. Drewes, R. Niessner, and C. Haisch, "Photoacoustic spectroscopy for the quantification of N2O in the off gas of wastewater treatment plants," Analytical Chemistry, Vol. 89, No. 6, 3795-3801, 2017.
doi:10.1021/acs.analchem.7b00491 Google Scholar
19. Shi, C., D. Wang, Z. Wang, L. Ma, Q. Wang, K. Xu, S. C. Chen, and W. Ren, "A mid-infrared fiber-coupled QEPAS nitric oxide sensor for real-time engine exhaust monitoring," IEEE Sensors Journal, Vol. 17, No. 22, 7418-7424, 2017.
doi:10.1109/JSEN.2017.2758640 Google Scholar
20. Zhang, T., G. Zhang, X. Liu, G. Gao, and T. Cai, "A TDLAS sensor for simultaneous measurement of temperature and C2H4 concentration using differential absorption scheme at high temperature," Frontiers in Physics, Vol. 8, 2020. Google Scholar
21. Cai, T., G. Gao, M. Wang, G. Wang, Y. Liu, and X. Gao, "Simultaneous measurements of temperature and CO2 concentration employing diode laser absorption near 2.0 μm," Applied Physics B. Lasers and Optics, Vol. B118, No. 3, 471-480, 2015.
doi:10.1007/s00340-015-6015-2 Google Scholar
22. Liu, C. and L. Xu, "Laser absorption spectroscopy for combustion diagnosis in reactive flows: A review," Applied Spectroscopy Reviews, 1-44, 2018.
doi:10.1080/05704928.2017.1352509 Google Scholar
23. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science & Technology, Vol. 24, No. 1, 2013.
doi:10.1088/0957-0233/24/1/012004 Google Scholar
24. Hu, L., C. Zheng, Y. Zhang, J. Zheng, and F. K. Tittel, "Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing," Optics Letters, Vol. 45, No. 7, 2020.
doi:10.1364/OL.388754 Google Scholar
25. Ma, Y., R. Lewicki, M. Razeghi, and F. K. Tittel, "QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL," Optics Express, Vol. 21, No. 1, 1008, 2013.
doi:10.1364/OE.21.001008 Google Scholar
26. Yin, X., H. Wu, L. Dong, B. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F.K. Tittel, "ppb-level SO2 photoacoustic sensors with a suppressed absorption-desorption effect by using a 7.41 μm external-cavity quantum cascade laser," ACS Sensors, Vol. 5, No. 2, 549-556, 2020.
doi:10.1021/acssensors.9b02448 Google Scholar
27. Liu, K., J. Mei, W. Zhang, W. Chen, and X. Gao, "Multi-resonator photoacoustic spectroscopy," Sensors & Actuators B: Chemical, Vol. 251, 632-636, Nov. 2017. Google Scholar
28. Gong, Z. F., G. J. Wu, X. Jiang, H. E. Li, T. L. Gao, M. Guo, F. X. Ma, K. Chen, L. Mei, W. Peng, and Q. X. Yu, "All-optical high-sensitivity resonant photoacoustic sensor for remote CH4 gas detection," Optics Express, Vol. 29, No. 9, 13600-13609, 2021.
doi:10.1364/OE.424387 Google Scholar
29. Ma, Y. F., W. Feng, S. D. Qiao, Z. X. Zhao, S. F. Gao, and Y. Y. Wang, "Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing," Optics Express, Vol. 30, No. 11, 18836-18844, 2022.
doi:10.1364/OE.460134 Google Scholar
30. Kosterev, A. A., A. B. Yu, R. F. Curl, and F. K. Tittel, "Quartz-enhanced photoacoustic spectroscopy," Optics Letters, Vol. 27, No. 21, 1902-1904, 2002.
doi:10.1364/OL.27.001902 Google Scholar
31. Ma, Y. F., "Recent advances in QEPAS and QEPTS based trace gas sensing: A review," Frontiers in Physics, Vol. 8, 2020. Google Scholar
32. Ma, Y., Y. Hong, S. Qiao, Z. Lang, and X. Liu, "H-shaped acoustic micro-resonator-based quartz-enhanced photoacoustic spectroscopy," Optics Letters, Vol. 3, 47, 2022. Google Scholar
33. Ma, Y., Y. He, X. Yu, C. Chen, R. Sun, and F. K. Tittel, "HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork," Sensors & Actuators B: Chemical, Vol. 233, No. 5, 388-393, 2016.
doi:10.1016/j.snb.2016.04.114 Google Scholar
34. Wu, H., A. Sampaolo, L. Dong, P. Patimisco, X. Liu, H. Zheng, X. Yin, W. Ma, L. Zhang, W. Yin, V. Spagnolo, S. Jia, and F. K. Tittel, "Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing," Applied Physics Letters, Vol. 107, No. 11, 2015. Google Scholar
35. Qiao, S. D., A. Sampaolo, P. Patimisco, V. Spagnolo, and Y. F. Ma, "Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell," Photoacoustics, Vol. 27, 2022. Google Scholar
36. He, Y., Y. Ma, Y. Tong, X. Yu, and F. K. Tittel, "Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell," Optics Letters, Vol. 44, No. 8, 1904-1907, 2019.
doi:10.1364/OL.44.001904 Google Scholar
37. Ma, Y., Y. Hu, S. Qiao, Y. He, and F. K. Tittel, "Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy," Photoacoustics, Vol. 20, 100206, 2020.
doi:10.1016/j.pacs.2020.100206 Google Scholar
38. Zhang, Q., J. Chang, Z. Cong, and Z. Wang, "Long-path quartz tuning fork enhanced photothermal spectroscopy gas sensor using a high power Q-switched fiber laser," Measurement, Vol. 156, 107601, 2020.
doi:10.1016/j.measurement.2020.107601 Google Scholar
39. Zhou, S., L. Xu, K. Chen, L. Zhang, B. Yu, T. Jiang, and J. Li, "Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating," Sensors and Actuators B: Chemical, Vol. 326, 2020. Google Scholar
40. Hu, Y. Q., S. D. Qiao, Y. He, Z. T. Lang, and Y. F. Ma, "Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing," Optics Express, Vol. 29, No. 4, 5121-5127, 2021.
doi:10.1364/OE.418256 Google Scholar
41. Rothman, L. S., I. E. Gordon, Y. Babikov, and A. Barbe, "The HITRAN2016 molecular spectroscopic database," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 130, No. 11, 4-50, 2017. Google Scholar