Vol. 119
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-07
A Compact Low-Profile P-Shaped Wearable Antenna for Medical Application
By
Progress In Electromagnetics Research M, Vol. 119, 161-175, 2023
Abstract
This research article introduces a compact wearable antenna designed specifically for medical applications. The antenna underwent prototyping using a flexible Rogers Duroid RO3003TM material, featuring a small form factor measuring 35 × 32 × 0.5 mm3. In the initial phase of the design process, a basic P-shaped rectangular patch antenna was employed. However, during the first design iteration (Design 1), the antenna demonstrated a single resonance around 1.2 GHz, although it was not optimally matched at that frequency. To tackle this problem and achieve miniaturization involved the introduction of two rectangular patches positioned below the P-shaped patch known as Design 2. To further improve its performance, an inverted L-slot was incorporated. The frequency of operation for the antenna is 2.4 GHz, with a bandwidth measuring 25.2% ranging from (2.087-2.692) GHz. The measured radiation patterns demonstrate bidirectional properties in the E-plane and omnidirectional properties in the H-plane and maintain a high gain of 3.54 dBi and an efficiency of 91%. The SAR values are 0.018/0.013 Watt/kg on the chest. Similarly, the SAR values are 0.02/0.015 Watt/kg on the thigh, using 1/10 g of human tissue, which comply with the standards set by the FCC and the ICNIRP. Furthermore, the simulation and measurement under bending investigation and being close to the human body demonstrate excellent performance. Therefore, the suggested antenna holds significant potential as a compact solution for wearable medical applications.
Citation
Zainab Yunusa, "A Compact Low-Profile P-Shaped Wearable Antenna for Medical Application," Progress In Electromagnetics Research M, Vol. 119, 161-175, 2023.
doi:10.2528/PIERM23071307
References

1. Abdel Aziz, A. A., A. T. Abdel-Motagaly, A. A. Ibrahim, W. M. A. El Rouby, and M. A. Abdalla, "A printed expanded graphite paper based dual band antenna for conformal wireless applications," AEU --- Int. J. Electron. Commun., Vol. 110, 152869, 2019.
doi:10.1016/j.aeue.2019.152869        Google Scholar

2. Yalduz, H., T. E. Tabaru, V. T. Kilic, and M. Turkmen, "Design and analysis of low profile and low SAR full-textile UWB wearable antenna with metamaterial for WBAN applications," AEU --- Int. J. Electron. Commun., Vol. 126, 153465, 2020.
doi:10.1016/j.aeue.2020.153465        Google Scholar

3. Musa, U., S. M. Shah, H. A. Majid, et al. "Design and analysis of a compact dual-band wearable antenna for WBAN applications," IEEE Access, Vol. 11, 30996-31009, 2023.
doi:10.1109/ACCESS.2023.3262298        Google Scholar

4. Mao, C., P. L. Werner, D. H. Werner, D. Vital, and S. Bhardwaj, "Dual-polarized armband embroidered textile antenna for on-/off-body wearable applications," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1555-1556, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889041        Google Scholar

5. Montero, R., C. Camacho-Gomez, P. Espi, and S. Salcedo-Sanz, "Optimal design of a planar textile antenna for industrial scientific medical (ISM) 2.4 GHz wireless body area networks (WBAN) with the CRO-SL algorithm," Sensors, Vol. 18, 1982, 2018.
doi:10.3390/s18071982        Google Scholar

6. Yadav, A., V. Singh, G. Marques, B. Zapirain, and I. La Torre Diez, "Wireless body area networks: UWB wearable textile antenna for telemedicine and mobile health systems," Micromachines, Vol. 11, 2020.        Google Scholar

7. Biswas, A. K. and U. Chakraborty, "Investigation on decoupling of wide band wearable multiple-input multiple-output antenna elements using microstrip neutralization line," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 7, e21723, 2019.
doi:10.1002/mmce.21723        Google Scholar

8. Ashyap, A. Y. I., et al., "Fully fabric high impedance surface-enabled antenna for wearable medical applications," IEEE Access, Vol. 9, 6948-6960, 2021.
doi:10.1109/ACCESS.2021.3049491        Google Scholar

9. Kumar Biswas, A., S. S. Pattanayak, and U. Chakraborty, "Evaluation of dielectric properties of colored resin plastic button to design a small MIMO antenna," IEEE Trans. Instrum. Meas., Vol. 69, No. 11, 9170-9177, 2020.
doi:10.1109/TIM.2020.2999736        Google Scholar

10. Basir, A., A. Bouazizi, M. Zada, A. Iqbal, S. Ullah, and U. Naeem, "A dual-band implantable antenna with wide-band characteristics at MICS and ISM bands," Microw. Opt. Technol. Lett., Vol. 60, No. 12, 2944-2949, 2018.
doi:10.1002/mop.31447        Google Scholar

11. Bahrouni, M., et al., "Modeling of a compact, implantable, dual-band antenna for biomedical applications," Electronics, Vol. 12, No. 6, 2023.
doi:10.3390/electronics12061475        Google Scholar

12. Salama, S., D. Zyoud, and A. Abuelhaija, "Design of a dual-band planar inverted F-L implantable antenna for biomedical applications," J. Phys. Conf. Ser., Vol. 1711, No. 1, 12002, Nov. 2020.
doi:10.1088/1742-6596/1711/1/012002        Google Scholar

13. Savci, H. and F. Kaburcuk, "FDTD-based SAR calculation of a wearable antenna for wireless body area network devices," Int. J. Microw. Wirel. Technol., 1-7, 2022.
doi:10.1017/S1759078722001283        Google Scholar

14. Savci, H., S. Khan, and F. Kaburcuk, "Analysis of a compact multi-band textile antenna for WBAN and WLAN applications," Balkan Journal of Electrical and Computer Engineering, Vol. 9, No. 3, 255-260, 2021.
doi:10.17694/bajece.849699        Google Scholar

15. Suneetha, R. and P. V. Sridevi, "Wearable patch antennas on Fr4, rogers and jeans fabric substrates for biomedical applications," Communication and Intelligent Systems, 735-743, 2022.
doi:10.1007/978-981-19-2130-8_57        Google Scholar

16. Panda, S., A. Gupta, and B. Acharya, "Wearable microstrip patch antennas with different flexible substrates for health monitoring system," Mater. Today Proc., Vol. 45, 4002-4007, 2021.
doi:10.1016/j.matpr.2020.09.127        Google Scholar

17. Yan, S., L. A. Y. Poffelie, P. J. Soh, X. Zheng, and G. A. E. Vandenbosch, "On-body performance of wearable UWB textile antenna with full ground plane," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016.        Google Scholar

18. Mohandoss, S., S. K. Palaniswamy, R. R. Thipparaju, M. Kanagasabai, B. R. Bobbili Naga, and S. Kumar, "On the bending and time domain analysis of compact wideband flexible monopole antennas," AEU --- Int. J. Electron. Commun., Vol. 101, 168-181, 2019.
doi:10.1016/j.aeue.2019.01.015        Google Scholar

19. Gao, G.-P., C. Yang, B. Hu, R.-F. Zhang, and S.-F. Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 2, 288-292, Feb. 2019.
doi:10.1109/LAWP.2018.2889117        Google Scholar

20. Kaur, H. and P. Chawla, "Design and evaluation of a fractal wearable textile antenna for medical applications," Wirel. Pers. Commun., Vol. 128, No. 1, 683-699, 2023.
doi:10.1007/s11277-022-09973-8        Google Scholar

21. Poonkuzhali, R., Z. Alex, and T. Balakrishnan, "Miniaturized wearable fractal antenna for military applications at VHF band," Progress In Electromagnetics Research C, Vol. 62, 179-190, 2016.
doi:10.2528/PIERC15070105        Google Scholar

22. Tong, X., C. Liu, H. Guo, and X. Liu, "A triple-mode reconfigurable wearable repeater antenna for WBAN applications," Int. J. RF Microw. Comput. Eng., Vol. 29, e21615, 2019.
doi:10.1002/mmce.21615        Google Scholar

23. Hong, Y., J. Tak, and J. Choi, "An all-textile SIW cavity-backed circular ring-slot antenna for WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1995-1999, 2016.
doi:10.1109/LAWP.2016.2549578        Google Scholar

24. Arif, A., M. Zubair, M. Ali, M. U. Khan, and M. Q. Mehmood, "A compact, low-profile fractal antenna for wearable on-body WBAN applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 5, 981-985, 2019.
doi:10.1109/LAWP.2019.2906829        Google Scholar

25. Li, Y. J., Z. Y. Lu, and L. S. Yang, "CPW-fed slot antenna for medical wearable applications," IEEE Access, Vol. 7, 42107-42112, 2019.
doi:10.1109/ACCESS.2019.2908199        Google Scholar

26. Ayd, A., R. Saad, W. M. Hassan, and A. A. Ibrahim, "A monopole antenna with cotton fabric material for wearable applications," Sci. Rep., Vol. 13, No. 1-7315, 2023.        Google Scholar

27. Kapetanakis, T. N., C. D. Nikolopoulos, K. Petridis, and I. O. Vardiambasis, "Wearable textile antenna with a graphene sheet or conductive fabric patch for the 2.45 GHz band," Electronics, Vol. 10, No. 21, 2021.
doi:10.3390/electronics10212571        Google Scholar

28. Shah, A. and P. Patel, "Suspended embroidered triangular e-textile broadband antenna loaded with shorting pins," AEU --- Int. J. Electron. Commun., Vol. 130, 153573, 2021.
doi:10.1016/j.aeue.2020.153573        Google Scholar

29. Arulmurugan, S., T. R. Sureshkumar, and Z. C. Alex, "Compact wearable microstrip patch antenna for 2.4 GHz using loaded slits and shorting pins," 2021 Emerging Trends in Industry 4.0 (ETI 4.0), 1-5, 2021.        Google Scholar

30. Agneessens, S., S. Lemey, T. Vervust, and H. Rogier, "Wearable, small, and robust: The circular quarter-mode textile antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1, 2015.        Google Scholar

31. Casula, G. A., "A quarter mode SIW antenna for short-range wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 7, 853-864, 2019.
doi:10.1080/09205071.2018.1537136        Google Scholar

32. Sugunavathy, S., V. Sudha, and D. Parthiban, "Fabric woven textile antenna for medical applications," J. Phys. Conf. Ser., Vol. 1917, 12022, 2021.
doi:10.1088/1742-6596/1917/1/012022        Google Scholar

33. Abolade, J. O., D. B. O. Konditi, and V. M. Dharmadhikary, "Comparative study of textile material characterization techniques for wearable antennas," Results Mater., Vol. 9, 100168, 2021.
doi:10.1016/j.rinma.2021.100168        Google Scholar

34. Suraya, A. N., et al., "Wearable antenna gain enhancement using reactive impedance substrate," Indones. J. Electr. Eng. Comput. Sci., Vol. 13, 708-712, 2019.        Google Scholar

35. Hirtenfelder, F., "Effective antenna Simulations using CST Microwave Studio (R)," 239, 2007.        Google Scholar

36. International Commission on Non-Ionizing Protection "Guidelines for limiting exposure to time-varying electric magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998.        Google Scholar

37. C95.1 Edition-1999 "IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz,", 1-83, IEEE, Apr. 1999.        Google Scholar

38. Ullah, M. A., M. T. Islam, T. Alam, and F. Bin Ashraf, "Paper-based flexible antenna for wearable telemedicine applications at 2.4 GHz ISM band," Sensors, Vol. 18, No. 12, 2018.
doi:10.3390/s18124214        Google Scholar

39. Ashyap, A. Y. I., Z. Z. Abidin, S. H. Dahlan, et al. "Inverted E-shaped wearable textile antenna for medical applications," IEEE Access, Vol. 6, 35214-35222, 2018.
doi:10.1109/ACCESS.2018.2847280        Google Scholar

40. Ashyap, A., Z. Z. Abidin, S. H. Dahlan, et al. "Compact and low-profile textile EBG-based antenna for wearable medical applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2550-2553, 2017.
doi:10.1109/LAWP.2017.2732355        Google Scholar

41. Ashyap, A. Y. I., S. H. Dahlan, Z. Z. Abidin, et al. "Robust and efficient integrated antenna with EBG-DGS enabled wide bandwidth for wearable medical device applications," IEEE Access, Vol. 8, 56346-56358, 2020.
doi:10.1109/ACCESS.2020.2981867        Google Scholar

42. Gao, G., R. Zhang, C. Yang, H. Meng, W. Geng, and B. Hu, "Microstrip monopole antenna with a novel UC-EBG for 2.4 GHz WBAN applications," IET Microwaves, Antennas Propag., Vol. 13, 2019.        Google Scholar

43. Gao, G., S. Wang, R. Zhang, C. Yang, and B. Hu, "Flexible EBG-backed PIFA based on conductive textile and PDMS for wearable applications," Microw. Opt. Technol. Lett., Vol. 62, 2020.        Google Scholar

44. El Atrash, M., M. Abdalla, and H. El-Hennawy, "A compact flexible textile artificial magnetic conductor-based wearable monopole antenna for low specific absorption rate wrist applications," Int. J. Wirel. Microw. Technol., Vol. 13, 2020.        Google Scholar