1. Squartecchia, M., T. K. Johansen, J. Y. Dupuy, et al. "E-band indium phosphide double heterojunction bipolar transistor monolithic microwave-integrated circuit power amplifier based on stacked transistors," Microwave and Optical Technology Letters, Vol. 61, No. 2, 550-555, 2019.
doi:10.1002/mop.31558 Google Scholar
2. Boulgheb, A., M. Lakhdara, and S. Latreche, "Improvement of the self-heating performance of an advanced SiGe HBT transistor through the Peltier effect," IEEE Transactions on Electron Devices, Vol. 68, No. 2, 479-484, 2021.
doi:10.1109/TED.2020.3044869 Google Scholar
3. Tanaka, S., "A study on AM-AM/PM characteristics of a single-stage HBT power amplifier," IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E104-A, No. 2, 484-491, 2021.
doi:10.1587/transfun.2020GCP0010 Google Scholar
4. Mohammadi, F. and A. Sadrossadat, "Modeling and simulation techniques for microwave components," Microwave Systems and Applications, 2017. Google Scholar
5. Zhang, H., G. Niu, M. B. Willemsen, and A. J. Scholten, "Improved compact modeling of SiGe HBT linearity with MEXTRAM," IEEE Transactions on Electron Devices, Vol. 68, No. 6, 2597-2603, 2021.
doi:10.1109/TED.2021.3070530 Google Scholar
6. Karimi, G., R. Banitalebi, and S. B. Sedaghat, "Simulation of SiGe:C HBTs using neural network and adaptive neuro-fuzzy inference system for RF applications," International Journal of Electronics, Vol. 100, No. 7, 959-975, 2013.
doi:10.1080/00207217.2012.727353 Google Scholar
7. Rudolph, M., "Compact HBT modeling: status and challenges," IEEE MTT-S International Microwave Symposium, 1206-1209, Anaheim, CA, USA, 2010. Google Scholar
8. Johansen, T. K., M. Rudolph, T. Jensen, et al. "Small- and large-signal modeling of InP HBTs in transferred-substrate technology," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 3–4, 243-251, 2014.
doi:10.1017/S1759078714000051 Google Scholar
9. Zhang, A. and J. Gao, "An improved small signal model of InP HBT for millimeter-wave applications," Microwave and Optical Technology Letters, Vol. 63, No. 8, 2160-2164, 2021.
doi:10.1002/mop.32876 Google Scholar
10. Zhang, J., M. Liu, J. Wang, and K. Xu, "An analytic method for parameter extraction of InP HBTs small-signal model," Circuit World, Vol. 48, No. 4, 393-400, 2021.
doi:10.1108/CW-06-2020-0099 Google Scholar
11. Cheng, L., H. Lu, M. Xia, et al. "An augmented small-signal model of InP HBT with its analytical based parameter extraction technique," Microelectronics Journal, Vol. 121, 105366, 2022.
doi:10.1016/j.mejo.2022.105366 Google Scholar
12. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.
13. Feng, F., W. Na, J. Jin, et al. "Artificial neural networks for microwave computer-aided design: The state of the art," IEEE Transactions on Microwave Theory and Techniques, Vol. 11, No. 70, 4597-4619, 2022.
doi:10.1109/TMTT.2022.3197751 Google Scholar
14. Zlatica, D. M., G. Crupi, A. Caddemi, et al. "A review on the artificial neural network applications for small-signal modeling of microwave FETs," International Journal of Numerical Modelling Electronic Networks Devices and Fields, Vol. 33, No. 3, e2668, 2020.
doi:10.1002/jnm.2668 Google Scholar
15. Feng, F., W. Na, J. Jin, et al. "ANNs for fast parameterized EM modeling: the state of the art in machine learning for design automation of passive microwave structures," IEEE Microwave Magazine, Vol. 22, No. 10, 37-50, 2021.
doi:10.1109/MMM.2021.3095990 Google Scholar
16. Zhang, A. and J. Gao, "InP HBT small signal modeling based on artificial neural network for millimeter-wave application," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 1-3, Hangzhou, China, 2020. Google Scholar
17. Zhu, L., J. Zhao, Z. Li, et al. "A general neuro-space mapping technique for microwave device modeling," EURASIP Journal on Wireless Communications and Networking, Vol. 2018, No. 1, 37, 2018.
doi:10.1186/s13638-018-1034-4 Google Scholar
18. Zhang, W., F. Feng, V.-M.-R. Gongal-Reddy, et al. "Space Mapping approach to electromagnetic centric multiphysics parametric modeling of microwave components," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 7, 3169-3185, 2018.
doi:10.1109/TMTT.2018.2832120 Google Scholar
19. Yan, S., Y. Zhang, W. Liu, et al. "A novel electromagnetic centric multiphysics parametric modeling approach using neuro-space mapping for microwave passive components," Photonics, Vol. 9, No. 12, 960, 2022.
doi:10.3390/photonics9120960 Google Scholar
20. Zhao, Z., L. Zhang, F. Feng, et al. "Space mapping technique using decomposed mappings for GaN HEMT modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 8, 3318-3341, 2020.
doi:10.1109/TMTT.2020.3004622 Google Scholar
21. Zhang, L., J. J. Xu, M. C. E. Yagoub, et al. "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 9, 2752-2767, 2005.
doi:10.1109/TMTT.2005.854190 Google Scholar
22. Yan, S., S. Zhang, Y. Zhang, et al. "An accurate neuro-space mapping method for heterojunction bipolar transistor modeling," 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 1-4, Hangzhou, China, 2020. Google Scholar
23. Yan, S., Q. Cheng, H. Wu, and Q. J. Zhang, "Neuro-space mapping for modeling heterojunction bipolar transistor," Transactions of Tianjin University, Vol. 21, No. 1, 90-94, 2015.
doi:10.1007/s12209-015-2493-x Google Scholar
24. Wu, H. F., Q. F. Cheng, S. X. Yan, et al. "Transistor model building for a microwave power heterojunction bipolar transistor," IEEE Microwave Magazine, Vol. 16, No. 2, 85-92, 2015.
doi:10.1109/MMM.2014.2377588 Google Scholar
25. Zhang, Q. J., "Neuro modeler plus,", Dept. Electron., Carleton Univ., Ottawa, ON., Canada, 2008. Google Scholar