1. Fang, D. G., Antenna Theory and Microstrip Antennas, 1st Ed., CRC Press, 2017.
doi:10.1201/b10302
2. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., John Wiley, 2005.
3. Yang, L., N.-W. Liu, Z.-Y. Zhang, G. Fu, Q.-Q. Liu, and S. Zuo, "A novel single feed omnidirectional circularly polarized antenna with wide AR bandwidth," Progress In Electromagnetics Research C, Vol. 51, 35-43, 2014.
doi:10.2528/PIERC14041402 Google Scholar
4. Albooyeh, M., N. Kamjani, and M. Shobeyri, "A novel cross-slot geometry to improve impedance bandwidth of microstrip antennas," Progress In Electromagnetics Research Letters, Vol. 4, 63-72, 2008.
doi:10.2528/PIERL08050203 Google Scholar
5. Das, U. and N. Jahan, "Dual band rectangular slotted electromagnetic band gap structure design for improving microstrip patch antenna performance," 2020 11th International Conference on Electrical and Computer Engineering (ICECE), 97-100, Dhaka, Bangladesh, Dec. 2020. Google Scholar
6. Guo, Q.-Y., Q. W. Lin, and H. Wong, "Directive beam radiation by a fresnel zone plate integrated partially reflective surface for millimeter-wave applications," 2020 14th European Conference on Antennas and Propagation (EuCAP), 1-3, Copenhagen, Denmark, Mar. 2020. Google Scholar
7. De Dieu Ntawangaheza, J., L. Sun, Y. Li, and Z. Xie, "Improving bandwidth, gain and aperture efficiency of patch antenna using hybrid AMC ground plane," Progress In Electromagnetics Research C, Vol. 103, 71-82, 2020.
doi:10.2528/PIERC20030903 Google Scholar
8. Huang, J. and V. Jamnejad, "A microstrip array feed for land mobile satellite reflector antennas," IEEE Trans. Antennas Propagat., Vol. 37, No. 2, 153-158, Feb. 1989.
doi:10.1109/8.18701 Google Scholar
9. Qiu, Y., H. Zheng, M. Wang, and E. Li, "Directivity of antenna enhanced by using metasurface structure," 2020 13th UK-Europe-China Workshop on Millimetre-Waves and Terahertz Technologies (UCMMT), 1-3, Tianjin, China, Aug. 2020. Google Scholar
10. Joshi, M. P., V. J. Gond, and J. J. Chopade, "Saw-tooth shaped sequentially rotated fractal boundary square microstrip patch antenna for wireless application," Progress In Electromagnetics Research Letters, Vol. 94, 109-115, 2020.
doi:10.2528/PIERL20092005 Google Scholar
11. Hong, T., S.-T. Yu, W. Jiang, and S.-X. Gong, "Gain enhancement of the circularly polarized antenna by fractal technique," Microw. Opt. Technol. Lett., Vol. 55, No. 11, 2656-2659, Nov. 2013.
doi:10.1002/mop.27899 Google Scholar
12. Nurhayati, N., A. Manicoba De-Oliveira, W. Chaihongsa, B. E. Sukoco, and A. K. Saleh, "A comparative study of some novel wideband tulip ower monopole antennas with modified patch and ground plane," Progress In Electromagnetics Research C, Vol. 112, 239-250, 2021.
doi:10.2528/PIERC21040707 Google Scholar
13. Roy, S. and U. Chakraborty, "Gain enhancement of a dualband WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, Jul. 2018.
doi:10.1049/iet-com.2018.0170 Google Scholar
14. Al-Gburi, A. J. A., I. Ibrahim, M. Y. Zeain, and Z. Zakaria, "Compact size and high gain of CPW-fed UWB strawberry artistic shaped printed monopole antennas using FSS single layer reflector," IEEE Access, 1-1, 2020.
doi:10.1109/ACCESS.2020.2995069 Google Scholar
15. Gan, W., X. Lu, J. Yang, Z. Zhang, F. Liu, and S. Yang, "Design of the triple band micro-strip antenna with AMC reflector," 2020 Asia Conference on Computers and Communications (ACCC), 7-10, Singapore, Singapore, Sep. 2020. Google Scholar
16. Olawoye, T. O. and P. Kumar, "A high gain microstrip patch antenna with slotted ground plane for sub-6 GHz 5G communications," 2020 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD), 1-6, Durban, South Africa, Aug. 2020. Google Scholar
17. Yuan, Y.-N., J.-J. Feng, and X.-L. Xi, "Design of wearable antenna with compact artificial magnetic conductor reflecting plate," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, Xi'an, Oct. 2017. Google Scholar
18. Chung, K. L. and S. Chaimool, "Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface," Microw. Opt. Technol. Lett., Vol. 54, No. 2, 529-532, Feb. 2012.
doi:10.1002/mop.26574 Google Scholar
19. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "A compact umbrella-shaped UWB antenna with gain augmentation using frequency selective surface," Radioengineering, Vol. 27, No. 2, 448-454, Jun. 2018.
doi:10.13164/re.2018.0448 Google Scholar
20. Abdulhasan, R. A., R. Alias, K. N. Ramli, F. C. Seman, and R. A. AbdAlhameed, "High gain CPW-fed UWB planar monopole antennabased compact uniplanar frequency selective surface for microwave imaging," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 8, Aug. 2019.
doi:10.1002/mmce.21757 Google Scholar
21. Yuan, Y., X. Xi, Y. Zhao, and , "Compact UWB FSS reflector for antenna gain enhancement," IET Microwaves, Antennas & Propagation, Vol. 13, No. 10, 1749-1755, Aug. 2019.
doi:10.1049/iet-map.2019.0083 Google Scholar
22. Tahir, F. A., T. Arshad, S. Ullah, and J. A. Flint, "A novel FSS for gain enhancement of printed antennas in UWB frequency spectrum," Microw. Opt. Technol. Lett., Vol. 59, No. 10, 2698-2704, Oct. 2017.
doi:10.1002/mop.30789 Google Scholar
23. Madhav, B. T. P., A. V. Chaitanya, R. Jayaprada, and M. Pavani, "Circular monopole slotted antenna with FSS for high gain applications," ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 15, 7, 2016. Google Scholar
24. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially re ective surfaces with positive re ection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propagat., Vol. 60, No. 2, 743-750, Feb. 2012.
doi:10.1109/TAP.2011.2173113 Google Scholar
25. Tian, H., J. Wang, D. Han, and X. Wang, "A gain-enhanced dual-band microstrip antenna using metasurface as superstrate configuration," ACES Journal, Mar. 2022. Google Scholar
26. Supreeyatitikul, N., A. Boonpoonga, and C. Phongcharoenpanich, "Z-shaped metasurface-based wideband circularly polarized Fabry-Perot Antenna for C-band satellite technology," IEEE Access, Vol. 10, 59428-59441, 2022.
doi:10.1109/ACCESS.2022.3179360 Google Scholar