Vol. 121
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-11-08
Multi-Physics Analysis and Loss Evaluation of High Frequency Transformer with Non-Sinusoidal Excitation
By
Progress In Electromagnetics Research M, Vol. 121, 1-11, 2023
Abstract
High Frequency Transformer (HFT) acts as the key element of a Solid State Transformer (SST), which is a mandatory equipment in smartgrid system. SST replaces power frequency transformer by providing control and communication in power system. The design of an HFT matching the design of conventional distribution transformer is done in this paper. It is done by developing an iterative algorithm using Brute Force technique. The optimum design is selected by taking minimization of total owning cost as objective function. The algorithm takes eight design variables and four design constraints for shortlisting the optimum design. The optimum design developed is validated in finite element analysis software. The multi-physics analysis of the design is done by interconnecting electromagnetic, mechanical, thermal, and power electronics components of the system. The analytical and numerical analysis follow the same pattern by conducting a case study on the design of HFT with ratings 1000 kVA, 11 kV/415 V, three phases.
Citation
Sherin Joseph, Shajimon Kalayil John, Kudilil Prasad Pinkymol, Jineeth Joseph, and Kappamadathil Raman Muraleedharan Nair, "Multi-Physics Analysis and Loss Evaluation of High Frequency Transformer with Non-Sinusoidal Excitation," Progress In Electromagnetics Research M, Vol. 121, 1-11, 2023.
doi:10.2528/PIERM23082304
References

1. Kolar, J. W. and G. Ortiz, "Solid-state-transformers: Key components of future traction and smart grid systems," Proc. IEEE Intern. Power Electronics Conf., Hiroshima, Japan, 2014.

2. She, X., R. Burgos, G. Wang, F. Wang, and A. Q. Huang, "Review of solid state transformer in the distribution system: From components to field application," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 4077-4084, Raleigh, NC, USA, 2012.

3. Rehman, A. and M. Ashraf, "Design and analysis of PWM inverter for 100 kVA solid state transformer in a distribution system," IEEE Access, Vol. 7, 140152-140168, 2019.
doi:10.1109/ACCESS.2019.2942422

4. Chaturvedi, P. K., S. K. Jain, P. Agrawal, and P. K. Modi, "Investigations on different multilevel inverter control techniques by simulation," 2006 International Conference on Power Electronic, Drives and Energy Systems, 1-6, New Delhi, India, 2006.

5. Madhusoodhanan, S., A. Tripathi, D. Patel, K. Mainali, et al., "Solid-state transformer and MV grid tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters," IEEE Transactions on Industry Applications, Vol. 51, No. 4, 3343-3360, Jul.–Aug. 2015.
doi:10.1109/TIA.2015.2412096

6. Wang, D., J. Tian, C. Mao, et al. "A 10-kV/400-V 500-kVA electronic power transformer," IEEE Transactions on Industrial Electronics, Vol. 63, No. 11, 6653-6663, Nov. 2016.
doi:10.1109/TIE.2016.2586440

7. Montoya, R. J. G., "High-frequency transformer design for solid-state transformers in electric power distribution systems,", University of Arkansas, 2015.

8. Bahmani, M. A., T. Thiringer, A. Rabiei, and T. Abdulahovic, "Comparative study of a multi- MW high-power density DC transformer with an optimized high-frequency magnetics in all-DC offshore wind farm," IEEE Transactions on Power Delivery, Vol. 31, No. 2, 857-866, Apr. 2016.
doi:10.1109/TPWRD.2015.2494883

9. Lee, Y., G. Vakil, A. J. Watson, and P. Wheeler, "Geometry optimization and characterization of three-phase medium frequency transformer for 10 kVA isolated DC-DC converter," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 511-518, 2017.
doi:10.1109/ECCE.2017.8095826

10. Banumathy, J. R. and R. Veeraraghavalu, "High frequency transformer design and optimization using bio-inspired algorithms," Applied Artificial Intelligence, Vol. 32, No. 7–8, 707-726, 2018.
doi:10.1080/08839514.2018.1506969

11. Dworakowski, P., A. Wilk, M. Michna, B. Lefebvre, and T. Lagier, "3-phase medium frequency transformer for a 100kW 1.2 kV 20 kHz dual active bridge converter," IECON 2019 — 45th Annual Conference of the IEEE Industrial Electronics Society, 4071-4076, Lisbon, Portugal, 2019.

12. Olowu, T. O., H. Jafari, M. Moghaddami, and A. I. Sarwat, "Multiphysics and multiobjective design optimization of high-frequency transformers for solid-state transformer applications," IEEE Transactions on Industry Applications, Vol. 57, No. 1, 1014-1023, Jan.–Feb. 2021.
doi:10.1109/TIA.2020.3035129

13. Thango, B. A., J. A. Jordaan, and A. F. nnachi, "Total ownership cost evaluation for transformers within solar power plants," 2020 6th IEEE International Energy Conference (ENERGYCon), 302-307, Gammarth, Tunisia, 2020.
doi:10.1109/ENERGYCon48941.2020.9236613

14. Joseph, S., S. K. John, K. P. Pinkymol, J. Joseph, and K. R. M. Nair, "Multiphysics analysis of high frequency transformers used in SST with different magnetic materials," Progress In Electromagnetics Research M, Vol. 116, 129-143, 2023.
doi:10.2528/PIERM22121901

15. Mogorovic, M. and D. Dujic, "Medium frequency transformer leakage inductance modeling and experimental verification," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 419-424, Cincinnati, OH, USA, 2017.

16. Joseph, S., A. K. Abraham, P. Harikrishna Raj, J. Joseph, and K. R. M. Nair, "An iterative algorithm for optimum design of high frequency transformer in SST application," IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, 1538-1543, Singapore, 2020.

17. Nair, K. R. M., Power and Distribution Transformers: Practical Design Guide, 1st Ed., CRC Press, 2021.
doi:10.1201/9781003088578

18., IEC 60076-11: Power transformers — Part 11: Dry type Transformers, 2018.