1. Zhang, Weite, Shilie Zheng, Xiaonan Hui, Ruofan Dong, Xiaofeng Jin, Hao Chi, and Xianmin Zhang, "Mode division multiplexing communication using microwave orbital angular momentum: An experimental study," IEEE Transactions on Wireless Communications, Vol. 16, No. 2, 1308-1318, Feb. 2017.
doi:10.1109/TWC.2016.2645199 Google Scholar
2. Liu, Kang, Yongqiang Cheng, Yue Gao, Xiang Li, Yuliang Qin, and Hongqiang Wang, "Super-resolution radar imaging based on experimental OAM beams," Applied Physics Letters, Vol. 110, No. 16, 164102, Apr. 2017.
doi:10.1063/1.4981253 Google Scholar
3. Ge, Xiaohu, Ran Zi, Xusheng Xiong, Qiang Li, and Liang Wang, "Millimeter wave communications with OAM-SM scheme for future mobile networks," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 9, 2163-2177, Sep. 2017.
doi:10.1109/JSAC.2017.2720238 Google Scholar
4. Yu, Li, Xiuping Li, Zihang Qi, Hua Zhu, Yuhan Huang, and Zaid Akram, "Wideband circularly polarized high-order bessel beam reflectarray design using multiple-ring-cascade elements," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 7, 1226-1230, Jul. 2020.
doi:10.1109/LAWP.2020.2995936 Google Scholar
5. Chen, Rui, Wen-Xuan Long, Xiaodong Wang, and Jiandong Li, "Multi-mode OAM radio waves: Generation, angle of arrival estimation and reception with UCAs," IEEE Transactions on Wireless Communications, Vol. 19, No. 10, 6932-6947, 2020.
doi:10.1109/TWC.2020.3007026 Google Scholar
6. Zhang, Chao, Xuefeng Jiang, and Dong Chen, "Signal-to-noise ratio improvement by vortex wave detection with a rotational antenna," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 1020-1029, Feb. 2021.
doi:10.1109/TAP.2020.3016173 Google Scholar
7. Ma, Jingcan, Xiyao Song, Yuchen Yao, Zhennan Zheng, Xinlu Gao, and Shanguo Huang, "Research on the purity of orbital angular momentum beam generated by imperfect uniform circular array," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 968-972, Jun. 2021.
doi:10.1109/LAWP.2021.3068287 Google Scholar
8. Liu, Dandan, Wei Wu, Liangqi Gui, and Tao Jiang, "OAM mode purity improvement based on antenna array," Digital Communications and Networks, Jan. 2023. Google Scholar
9. Akram, Zaid, Xiuping Li, Zihang Qi, Abdul Aziz, Li Yu, Hua Zhu, Xing Jiang, and Xiaoming Li, "Broadband high-order OAM reflective metasurface with high mode purity using subwavelength element and circular aperture," IEEE Access, Vol. 7, 71963-71971, 2019.
doi:10.1109/ACCESS.2019.2919779 Google Scholar
10. Shahmirzadi, Arash Valizade and Ahmed A. Kishk, "OAM carrying vortex beam mode interconversion using modular cascaded transmitarrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 70, No. 7, 3591-3605, Jul. 2022.
doi:10.1109/TMTT.2022.3173748 Google Scholar
11. Huang, Hui-Fen and Shuai-Nan Li, "High-efficiency planar reflectarray with small-size for OAM generation at microwave range," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 3, 432-436, Mar. 2019. Google Scholar
12. Chen, Guan-Tao, Yong-Chang Jiao, and Gang Zhao, "A reflectarray for generating wideband circularly polarized orbital angular momentum vortex wave," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 182-186, Jan. 2019.
doi:10.1109/LAWP.2018.2885345 Google Scholar
13. Veysi, Mehdi, Caner Guclu, Filippo Capolino, and Yahya Rahmat-Samii, "Revisiting orbital angular momentum beams: Fundamentals, reflectarray generation, and novel antenna applications," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 68-81, Apr. 2018. Google Scholar
14. Ahmed, Zubair, Awab Muhammad, Shafaq Kausar, and Mojeeb Bin Ihsan, "Dual circularly polarized all-metal orbital angular momentum beam reflectarray antenna," 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), 581-582, Jul. 2022.
15. Wang, Yuxiang, Kuang Zhang, Yueyi Yuan, Xumin Ding, Badreddine Ratni, Shah Nawaz Burokur, and Qun Wu, "Planar vortex beam generator for circularly polarized incidence based on FSS," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1514-1522, Mar. 2020.
doi:10.1109/TAP.2019.2938666 Google Scholar
16. Li, Jiu-Sheng and Li-Na Zhang, "Simple terahertz vortex beam generator based on reflective metasurfaces," Optics Express, Vol. 28, No. 24, 36403-36412, Nov. 2020.
doi:10.1364/OE.410681 Google Scholar
17. Arrebola, M., Y. Álvarez, J. A. Encinar, and F. Las-Heras, "Accurate analysis of printed reflectarrays considering the near field of the primary feed," IET Microwaves, Antennas & Propagation, Vol. 3, No. 2, 187-194, Mar. 2009.
doi:10.1049/iet-map:20070325 Google Scholar
18. Zhou, Min, S. B. Sørensen, O. S. Kim, S. Pivnenko, and G. Toso, "Investigations on accurate analysis of microstrip reflectarrays," 33rd ESA Antenna Workshop on Challenges for Space Antenna Systems, 18-21, Oct. 2011.
19. Smith, Thomas, Ulrich Gothelf, Oleksiy S. Kim, and Olav Breinbjerg, "Design, manufacturing, and testing of a 20/30-GHz dual-band circularly polarized reflectarray antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1480-1483, 2013.
doi:10.1109/LAWP.2013.2288995 Google Scholar
20. Budhu, Jordan and Anthony Grbic, "Perfectly reflecting metasurface reflectarrays: Mutual coupling modeling between unique elements through homogenization," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 1, 122-134, Jan. 2021.
doi:10.1109/TAP.2020.3001450 Google Scholar
21. Xue, Wei, Xiaoming Chen, Hongyu Shi, Huilin Huang, Juan Chen, and Anxue Zhang, "Evaluation of the purity of OAM modes using the reverberation chamber technique," 2020 14th European Conference on Antennas and Propagation (EuCAP 2020), 1-4, Copenhagen, Denmark, Mar. 2020.
22. Ali, Ali, Mohsen Khalily, Tim Brown, and Rahim Tafazolli, "Beam-steering capability for OAM-based reflectarray at 5G-mmwave frequencies," IET Microwaves, Antennas & Propagation, Vol. 17, No. 2, 162-168, Feb. 2023.
doi:10.1049/mia2.12333 Google Scholar
23. Rao, Madasu Venkateswara, Jagannath Malik, S. Yuvaraj, and M. V. Kartikeyan, "Polarization insensitive reflectarray for OAM beam generation over octave bandwidth for 5G applications," AEU - International Journal of Electronics and Communications, Vol. 170, 154775, Oct. 2023. Google Scholar
24. Zhang, Junwei, Guoxuan Zhu, Jie Liu, Xiong Wu, Jiangbo Zhu, Cheng Du, Wenyong Luo, Yujie Chen, and Siyuan Yu, "Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining," Optics Express, Vol. 26, No. 4, 4243-4257, 2018.
doi:10.1364/OE.26.004243 Google Scholar
25. Drysdale, Timothy D., Ben Allen, Chris Stevens, Simon J. Berry, Francis C. Smith, and Justin Coon, "How orbital angular momentum modes are boosting the performance of radio links," IET Microwaves, Antennas & Propagation, Vol. 12, No. 10, 1625-1632, 2018.
doi:10.1049/iet-map.2017.0293 Google Scholar
26. Yao, Eric, Sonja Franke-Arnold, Johannes Courtial, Stephen Barnett, and Miles Padgett, "Fourier relationship between angular position and optical orbital angular momentum," Optics Express, Vol. 14, No. 20, 9071-9076, Oct. 2006.
doi:10.1364/OE.14.009071 Google Scholar
27. Moustafa, Lina, Raphael Gillard, Federico Peris, Renaud Loison, Herve Legay, and Etienne Girard, "The phoenix cell: A new reflectarray cell with large bandwidth and rebirth capabilities," IEEE Antennas and Wireless Propagation Letters, Vol. 10, No. 1, 71-74, 2011.
doi:10.1109/LAWP.2011.2108633 Google Scholar
28. Schejbal, Vladimír and Jan Hönig, "Holographic method of near-field antenna measurements," 1980 10th European Microwave Conference, 167-171, 1980.
29. Rioult, Jean, Samuel Delgrande, Nicolas Bremard, Gregoire Copin, and Virginie Deniau, "Autonomous electromagnetic mapping system in augmented reality," 2019 International Symposium on Electromagnetic Compatibility (EMC EUROPE 2019), 138-143, Barcelona, Spain, Sep. 2019.
doi:10.1109/emceurope.2019.8872055