Vol. 139
Latest Volume
All Volumes
PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-12-08
Performance Enhancement of High-Gain STDA Antennas with Reflector for 4G LTE and Sub-6 GHz 5G Applications: Design, Measurement, and Analysis
By
Progress In Electromagnetics Research C, Vol. 139, 87-94, 2024
Abstract
The paper focuses on the design, measurement, and performance analysis of a high-gain cross-orthogonal series fed two dipole antenna (STDA) arrays with side-wall reflectors. The antenna is specifically designed for 4G Long Term Evolution (LTE) and sub-6 GHz 5G band applications. The designed antenna is capable of operating at multiple frequencies aiming to support 4G LTE and the sub-6 GHz 5G application bands. To improve the radiation characteristics and prevent coupling effects in the presence of side-wall reflectors, parasitic strip pair directors are included in the antenna design. Furthermore, the performance of the designed STDA is evaluated by forming different array configurations, such as 2×1, 2×2, and 2×3 arrays. The various array configurations are proposed to investigate the effect of the projected array arrangements on the radiation pattern, impedance bandwidth, and gain characteristics. The results of the measurements show that the radiation characteristics of the antenna has improved significantly. The proposed antenna operates at six distinct frequencies for S11≤-10 dB. The operating frequencies at 1.8, 2.35, and 2.6 GHz can be utilized for LTE and 3.2, 4.2, and 5.2 GHz can support sub-6 GHz 5G bands. The antenna is characterized by its compact size, measuring around 89 mm × 71 mm, while still achieving high gain of 12.3 dB for single STDA element with parasites and with reflector. These results emphasize the importance of the proposed design, which incorporates parasitic strip pair directors and side-wall reflectors. This design methodology plays a crucial role in enhancing the performance of the prescribed STDA array for both 4G LTE and sub-6 GHz 5G applications.
Citation
Mohd Wasim, Shelej Khera, Tanvir Islam, Praveen Kumar Malik, Sivaji Asha, and Sudipta Das, "Performance Enhancement of High-Gain STDA Antennas with Reflector for 4G LTE and Sub-6 GHz 5G Applications: Design, Measurement, and Analysis," Progress In Electromagnetics Research C, Vol. 139, 87-94, 2024.
doi:10.2528/PIERC23102001
References

1. Ikram, Muhammad, Rifaqat Hussain, and Mohammad S. Sharawi, "4G/5G antenna system with dual function planar connected array," IET Microwaves Antennas $$&$$ Propagation, Vol. 11, No. 12, 1760-1764, Sep. 22, 2017.
doi:10.1049/iet-map.2017.0148

2. Naqvi, S. I., Aqeel H. Naqvi, Farzana Arshad, Muhammad A. Riaz, Muhammad A. Azam, Mansoor S. Khan, Yasar Amin, Jonathan Loo, and Hannu Tenhunen, "An integrated antenna system for 4G and millimeter-wave 5G future handheld devices," IEEE Access, Vol. 7, 116555-116566, 2019.
doi:10.1109/ACCESS.2019.2936513

3. Ikram, Muhammad, Nghia Nguyen-Trong, and Amin Abbosh, "Hybrid antenna using open-ended slot for integrated 4G/5G mobile application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 4, 710-714, Apr. 2020.
doi:10.1109/LAWP.2020.2978181

4. Yang, Ming, Yufa Sun, and Fan Li, "A compact wideband printed antenna for 4G/5G/WLAN wireless applications," International Journal of Antennas and Propagation, Vol. 2019, 1-9, Sep. 10, 2019.
doi:10.1155/2019/3209840

5. Nadeem, Iram and Dong-You Choi, "Study on mutual coupling reduction technique for MIMO antenna," IEEE Access, Vol. 7, 563-586, 2019.
doi:10.1109/ACCESS.2018.2885558

6. Al Abbas, Emad, Muhammad Ikram, Ahmed Toaha Mobashsher, and Amin Abbosh, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, 181916-181923, 2019.
doi:10.1109/ACCESS.2019.2958897

7. Ismail, Nuraiza Bt, M. T. Ali, N. N. S. N. Dzulkefli, R. Abdullah, and S. Omar, "Design and analysis of microstrip Yagi antenna for Wi-Fi application," 2012 IEEE Asia-pacific Conference on Applied Electromagnetics (APACE), 283-286, Melaka, Malaysia, Dec. 11-13 2012.

8. Chen, Ya-Li, Yao-Zong Sui, Zhi-Qun Yang, Xiao-Yun Qu, and Wei-Hua Zong, "A broadband dual-polarized antenna for 2G/3G/4G/5G base station applications," Applied Computational Electromagnetics Society Journal, Vol. 36, No. 9, 1202-1208, Sep. 2021.
doi:10.47037/2021.ACES.J.360912

9. Kumar, Sumit, Amruta S. Dixit, Rajeshwari R. Malekar, Hema D. Raut, and Laxmikant K. Shevada, "Fifth generation antennas: a comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020.
doi:10.1109/ACCESS.2020.3020952

10. Patel, Devendra H. and Gautam D. Makwana, "Multiband antenna for 2G/3G/4G and sub-6 GHz 5G applications using characteristic mode analysis," Progress In Electromagnetics Research M, Vol. 115, 107-117, 2023.
doi:10.2528/PIERM22122901

11. Gollamudi, N. K., Y. V. Narayana, and A. M. Prasad, "A novel cow-head shaped multiple input multiple output antenna for 5G Sub: 6 GHz N77/N78 $$&$$ N79 bands applications," Progress In Electromagnetics Research C, Vol. 122, 83-93, 2022.
doi:10.2528/PIERC22060203

12. Tolli, A., L. Thiele, S. Suyama, G. Fodor, N. Rajatheva, E. De Carvalho, and J. H. Sorensen, "Massive multiple-input multiple-output (MIMO) systems," 5G Mobile and Wireless Communications Technology, 2016.

13. Malviya, Leeladhar, Rajib Kumar Panigrahi, and M. V. Kartikeyan, "MIMO antennas with diversity and mutual coupling reduction techniques: a review," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 8, 1763-1780, Oct. 2017.
doi:10.1017/S1759078717000538

14. Yeo, Junho and Jong-Ig Lee, "Design of compact broadband series-fed two dipole array antenna with top loading," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 892-893, Orlando, Fl, Jul. 07-13 2013.

15. Malaisamy, K., M. Santhi, S. Robinson, and S. Mohd Wasim, "Design and development of dipole array antenna for wi-fi applications," Wireless Personal Communications, Vol. 123, No. 4, 3375-3400, Apr. 2022.
doi:10.1007/s11277-021-09293-3

16. Yeo, Junho and Jong-Ig Lee, "Size reduction of series-fed two dipole array antenna using top-loaded elements," Microwave and Optical Technology Letters, Vol. 55, No. 10, 2288-2293, Oct. 2013.
doi:10.1002/mop.27839

17. Wasim, M. and S. Khera, "Dual band and polarised cross STDA MIMO system for the base station antenna for 5G communications," 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), 1-4, 2021.

18. Haridoss, G., S. Ravimaran, J. William, Mohammad Wasim, and M. Abdullah, "High gain series fed two dipole array antenna with reduced size for LTE application," IETE Journal of Research, Vol. 68, No. 2, 1084-1090, Mar. 4, 2022.
doi:10.1080/03772063.2019.1639555

19. Yeo, J., J. I. Lee, and J. T. Park, "Broadband series-fed dipole pair antenna with parasitic strip pair director," Progress In Electromagnetics Research C, Vol. 45, 1-13, 2013.

20. Thai, Trang T., Gerald R. DeJean, and Manos M. Tentzeris, "Design and development of a novel compact soft-surface structure for the front-to-back ratio improvement and size reduction of a microstrip yagi array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 369-373, 2008.
doi:10.1109/LAWP.2008.2001818

21. Chakraborty, A., B. Gupta, S. Chakraborty, and S. Dey, "Design and characterization of a Yagi Uda antenna array for weather monitoring," 2019 IEEE Radio and Antenna Days of the Indian Ocean (RADIO), 1-2, Sep. 2019.

22. Yamagajo, Takashi, Yohei Koga, Manabu Kai, Tabito Tonooka, Hirotake Sumi, and Mitsuharu Hoshino, "A nobel 4G and 5G antenna solution for future smartphones," 2018 IEEE International Symposium on Antennas and Propagation $$&$$ USNC/URSI National Radio Science Meeting, 1785-1786, Boston, Ma, Jul. 08-13 2018.

23. Thirupathi, M. and B. Harikrishna, "Reduced mutual coupling multiband MIMO patch antenna with swastik type mushroom EBG," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 14, No. 1, 490-494, 2019.
doi:10.11591/ijeecs.v14.i1.pp490-494

24. Thakur, Vishakha, Naveen Jaglan, and Samir D. Gupta, "Design of a dual-band 12-element MIMO antenna array for 5G mobile applications," Progress In Electromagnetics Research Letters, Vol. 95, 73-81, 2021.
doi:10.2528/PIERL20102004

25. Bergmann, J. R., F. J. V. Hasselmann, L. C. P. Pereira, and M. G. C. Branco, "Reflector antenna configurations for radio base stations in cellular communications," 1998 IEEE-APS Conference on Antennas and Propagation For Wireless Communications (Cat. No. 98EX184), 61-64, Waltham, Ma, Nov. 01-04 1998.
doi:10.1109/APWC.1998.730647

26. Nurul, H. M. R., Z. Mansor, and M. K. A. Rahim, "Dual element MIMO planar inverted-F antenna for 5G millimeter wave application," TELKOMNIKA (Telecommunication Computing Electronics and Control), Vol. 17, No. 4, 1648-1655, 2019.
doi:10.12928/telkomnika.v17i4.12762

27. Douglas, Tanner J. and Kamal Sarabandi, "A high-isolation two-port planar antenna system for communication and radar applications," IEEE Access, Vol. 6, 9951-9959, 2018.
doi:10.1109/ACCESS.2018.2807415

28. Sehrai, Daniyal Ali, Jalal Khan, Mujeeb Abdullah, Muhammad Asif, Mohammad Alibakhshikenari, Bal Virdee, Wahab Ali Shah, Salahuddin Khan, Muhammad Ibrar, Saeedullah Jan, Amjad Ullah, and Francisco Falcone, "Design of high gain base station antenna array for mm-wave cellular communication systems," Scientific Reports, Vol. 13, No. 1, 4907, Mar. 25, 2023.
doi:10.1038/s41598-023-31728-z

29. Hua, Changzhou, Rongzheng Li, Yi Wang, and Yunlong Lu, "Dual-polarized filtering antenna with printed jerusalem-cross radiator," IEEE Access, Vol. 6, 9000-9005, 2018.
doi:10.1109/ACCESS.2018.2803790

30. Feng, Botao, Lei Li, Jui-Ching Cheng, and Chow-Yen-Desmond Sim, "A dual-band dual-polarized stacked microstrip antenna with high-isolation and band-notch characteristics for 5G microcell communications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4506-4516, Jul. 2019.
doi:10.1109/TAP.2019.2911619

31. Gao, Yue, Runbo Ma, Yapeng Wang, Qianyun Zhang, and Clive Parini, "Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4544-4549, Oct. 2016.
doi:10.1109/TAP.2016.2593869

32. Wu, Q., P. Liang, and X. Chen, "A broadband ±45◦ dual-polarized multiple-input multiple-output antenna for 5G base stations with extra decoupling elements," J. Commun. Inf. Netw., Vol. 3, No. 1, 31-37, Mar. 2018.
doi:10.1007/s41650-018-0002-9

33. Huang, H., X. Li, and Y. Liu, "5G MIMO antenna based on vector syn1thetic mechanism," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 6, 1052–1055, Jun. 2018.
doi:10.1109/LAWP.2018.2830807