1. Veselago, Viktor G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
3. Schurig, David, Jack J. Mock, B. J. Justice, Steven A. Cummer, John B. Pendry, Anthony F. Starr, and David R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
4. Marinov, K., A. D. Boardman, V. A. Fedotov, and N. Zheludev, "Toroidal metamaterial," New Journal of Physics, Vol. 9, No. 9, 324, 2007. Google Scholar
5. Magnus, F., B. Wood, J. Moore, Kelly Morrison, G. Perkins, J. Fyson, M. C. K. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A d.c. magnetic metamaterial," Nature Materials, Vol. 7, 295-297, 2008. Google Scholar
6. Chen, Hou-Tong, Willie J. Padilla, Joshua M. O. Zide, Arthur C. Gossard, Antoinette J. Taylor, and Richard D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 597-600, 2006.
doi:10.1038/nature05343 Google Scholar
7. Huang, Min, Bin Zheng, Tong Cai, Xiaofeng Li, Jian Liu, Chao Qian, and Hongsheng Chen, "Machine-learning-enabled metasurface for direction of arrival estimation," Nanophotonics, Vol. 11, 2001-2010, 2022. Google Scholar
8. Zhu, Rongrong, Tianhang Chen, Kai Wang, Hao Wu, and Huan Lu, "Metasurface-enabled electromagnetic illusion with generic algorithm," Frontiers in Materials, Vol. 10, 2023. Google Scholar
9. Padilla, Willie J., Dimitri N. Basov, and David R. Smith, "Negative refractive index metamaterials," Materials Today, Vol. 9, No. 7-8, 28-35, 2006. Google Scholar
10. Dolling, Gunnar, Martin Wegener, Costas M. Soukoulis, and Stefan Linden, "Negative-index metamaterial at 780 nm wavelength," Optics Letters, Vol. 32, No. 1, 53-55, 2007. Google Scholar
11. Chen, Hongsheng and Min Chen, "Flipping photons backward: Reversed Cherenkov radiation," Materials Today, Vol. 14, No. 1-2, 34-41, 2011.
doi:10.1016/S1369-7021(11)70020-7 Google Scholar
12. Duan, Zhaoyun, Xianfeng Tang, Zhanliang Wang, Yabin Zhang, Xiaodong Chen, Min Chen, and Yubin Gong, "Observation of the reversed Cherenkov radiation," Nature Communications, Vol. 8, 14901, 2017. Google Scholar
13. Seddon, N. and T. Bearpark, "Observation of the inverse Doppler effect," Science, Vol. 302, No. 5650, 1537-1540, 2003.
doi:10.1126/science.1089342 Google Scholar
14. Lee, Sam Hyeon, Choon Mahn Park, Yong Mun Seo, and Chul Koo Kim, "Reversed Doppler effect in double negative metamaterials," Physical Review B, Vol. 81, 241102, Jun. 2010.
doi:10.1103/PhysRevB.81.241102 Google Scholar
15. Zhai, S. L., X. P. Zhao, S. Liu, F. L. Shen, L. L. Li, and C. R. Luo, "Inverse Doppler effects in broadband acoustic metamaterials," Scientific Reports, Vol. 6, 32388, 2016.
doi:10.1038/srep32388 Google Scholar
16. Lu, Huan, Bin Zheng, Tong Cai, Chao Qian, Yihao Yang, Zuojia Wang, and Hongsheng Chen, "Frequency-controlled focusing using achromatic metasurface," Advanced Optical Materials, Vol. 9, No. 1, 2001311, Jan. 2021.
doi:10.1002/adom.202001311 Google Scholar
17. Hu, Yufeng, Xuan Liu, Mingke Jin, Yutao Tang, Xuecai Zhang, King Fai Li, Yan Zhao, Guixin Li, and Jing Zhou, "Dielectric metasurface zone plate for the generation of focusing vortex beams," PhotoniX, Vol. 2, 10, Jun. 2021.
doi:10.1186/s43074-021-00035-z Google Scholar
18. Lu, Huan, Jiwei Zhao, Bin Zheng, Chao Qian, Tong Cai, Erping Li, and Hongsheng Chen, "Eye accommodation-inspired neuro-metasurface focusing," Nature Communications, Vol. 14, No. 1, 3301, 2023.
doi:10.1038/s41467-023-39070-8 Google Scholar
19. Lu, Huan, Rongrong Zhu, Chi Wang, Tianze Hua, Siqi Zhang, and Tianhang Chen, "Soft actor-critic-driven adaptive focusing under obstacles," Materials, Vol. 16, No. 4, 1366, Feb. 2023.
doi:10.3390/ma16041366 Google Scholar
20. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
21. Cheng, Yongzhi, Helin Yang, Zhengze Cheng, and Nan Wu, "Perfect metamaterial absorber based on a split-ring-cross resonator," Applied Physics A, Vol. 102, 99-103, 2011. Google Scholar
22. Chen, Hou-Tong, "Interference theory of metamaterial perfect absorbers," Optics Express, Vol. 20, No. 7, 7165-7172, 2012.
doi:10.1364/OE.20.007165 Google Scholar
23. Huang, Li, Dibakar Roy Chowdhury, Suchitra Ramani, Matthew T. Reiten, Sheng-Nian Luo, Abul K. Azad, Antoinette J. Taylor, and Hou-Tong Chen, "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," Applied Physics Letters, Vol. 101, 101102, 2012.
doi:10.1063/1.4749823 Google Scholar
24. Rhee, J. Y., Y. J. Yoo, K. W. Kim, Y. J. Kim, and Y. P. Lee, "Metamaterial-based perfect absorbers," Journal of Electromagnetic Waves and Applications, Vol. 28, 1541-1580, 2014.
doi:10.1080/09205071.2014.944273 Google Scholar
25. Zhao, Xiaoguang, Kebin Fan, Jingdi Zhang, Huseyin R. Seren, Grace D. Metcalfe, Michael Wraback, Richard D. Averitt, and Xin Zhang, "Optically tunable metamaterial perfect absorber on highly flexible substrate," Sensors and Actuators A: Physical, Vol. 231, 74-80, 2015.
doi:10.1016/j.sna.2015.02.040 Google Scholar
26. Bowen, Patrick T., Alexandre Baron, and David R. Smith, "Theory of patch-antenna metamaterial perfect absorbers," Physical Review A, Vol. 93, 063849, Jun. 2016.
doi:10.1103/PhysRevA.93.063849 Google Scholar
27. Lei, Ming, Ningyue Feng, Qingmin Wang, Yanan Hao, Shanguo Huang, and Ke Bi, "Magnetically tunable metamaterial perfect absorber," Journal of Applied Physics, Vol. 119, 244504, 2016. Google Scholar
28. Liu, Xiaoming, Chuwen Lan, Ke Bi, Bo Li, Qian Zhao, and Ji Zhou, "Dual band metamaterial perfect absorber based on Mie resonances," Applied Physics Letters, Vol. 109, No. 6, 062902, 2016. Google Scholar
29. Khuyen, Bui Xuan, Bui Son Tung, Young Joon Yoo, Young Ju Kim, Ki Won Kim, Liang-Yao Chen, Vu Dinh Lam, and YoungPak Lee, "Miniaturization for ultrathin metamaterial perfect absorber in the VHF band," Scientific Reports, Vol. 7, 45151, 2017. Google Scholar
30. Schalch, Jacob, Guangwu Duan, Xiaoguang Zhao, Xin Zhang, and Richard D. Averitt, "Terahertz metamaterial perfect absorber with continuously tunable air spacer layer," Applied Physics Letters, Vol. 113, No. 6, 061113, 2018. Google Scholar
31. Liu, Xiaoming, Chuwen Lan, Bo Li, Qian Zhao, and Ji Zhou, "Dual band metamaterial perfect absorber based on artificial dielectric `molecules'," Scientific Reports, Vol. 6, 28906, 2016. Google Scholar
32. Amiri, Majid, Farzad Tofigh, Negin Shariati, Justin Lipman, and Mehran Abolhasan, "Review on metamaterial perfect absorbers and their applications to IoT," IEEE Internet of Things Journal, Vol. 8, No. 6, 4105-4131, 2021. Google Scholar
33. Huang, Min, Bin Zheng, Ruichen Li, Xiaofeng Li, Yijun Zou, Tong Cai, and Hongsheng Chen, "Diffraction neural network for multi-source information of arrival sensing," Laser & Photonics Reviews, Vol. 17, No. 10, 2300202, 2023. Google Scholar
34. Wu, Guozhang, Xiaofei Jiao, Yuandong Wang, Zeping Zhao, Yibo Wang, and Jianguo Liu, "Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide," Optics Express, Vol. 29, No. 2, 2703-2711, 2021. Google Scholar
35. Zhu, Rongrong, Dan Liu, Huan Lu, Liang Peng, Tong Cai, and Bin Zheng, "High-efficiency Pancharatnam-Berry metasurface-based surface plasma coupler," Advanced Photonics Research, 2300315, 2023. Google Scholar
36. Zheng, Bin, Huan Lu, Chao Qian, Dexin Ye, Yu Luo, and Hongsheng Chen, "Revealing the transformation invariance of full-parameter omnidirectional invisibility cloaks," Electromagnetic Science, Vol. 1, No. 2, 1-7, 2023. Google Scholar
37. Zhen, Zheng, Chao Qian, Yuetian Jia, Zhixiang Fan, Ran Hao, Tong Cai, Bin Zheng, Hongsheng Chen, and Erping Li, "Realizing transmitted metasurface cloak by a tandem neural network," Photonics Research, Vol. 9, No. 5, B229-B235, 2021. Google Scholar
38. Li, Ruichen, Yutong Jiang, Rongrong Zhu, Yijun Zou, Lian Shen, and Bin Zheng, "Design of ultra-thin underwater acoustic metasurface for broadband low-frequency diffuse reflection by deep neural networks," Scientific Reports, Vol. 12, No. 1, 12037, 2022. Google Scholar
39. Banadaki, Mohsen Dehghan, Abbas Ali Heidari, and Mansor Nakhkash, "A metamaterial absorber with a new compact unit cell," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 205-208, 2018. Google Scholar
40. Bhati, Amit, Kirankumar R. Hiremath, and Vivek Dixit, "Bandwidth enhancement of Salisbury screen microwave absorber using wire metamaterial," Microwave and Optical Technology Letters, Vol. 60, No. 4, 891-897, 2018. Google Scholar
41. Kim, Jongyeong, Heijun Jeong, and Sungjoon Lim, "Mechanically actuated frequency reconfigurable metamaterial absorber," Sensors and Actuators A: Physical, Vol. 299, 111619, 2019. Google Scholar
42. Long, L. V., N. S. Khiem, B. S. Tung, N. T. Tung, T. T. Giang, P. T. Son, B. X. Khuyen, V. D. Lam, L. Chen, H. Zheng, and Y. Lee, "Flexible broadband metamaterial perfect absorber based on graphene-conductive inks," Photonics, Vol. 8, 2021. Google Scholar
43. Lai, Senfeng, Yanghui Wu, Junjie Wang, Wen Wu, and Wenhua Gu, "Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure," Optical Materials Express, Vol. 8, No. 6, 1585-1592, 2018. Google Scholar
44. Park, Sangmin, Geonyeong Shin, Hyun Kim, Youngwan Kim, and Ick-Jae Yoon, "Polarization and incidence angle independent low-profile wideband metamaterial electromagnetic absorber using indium tin oxide (ITO) film," Applied Sciences, Vol. 11, No. 19, 9315, 2021. Google Scholar
45. Yin, Zhiping, Yujiao Lu, Sheng Gao, Jun Yang, Weien Lai, Zelun Li, and Guangsheng Deng, "Optically transparent and single-band metamaterial absorber based on indium-tin-oxide," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21536, 2019. Google Scholar