Vol. 125
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-03-11
Analysis and Design of a Directive Antenna Array for C-Band Communication Applications
By
Progress In Electromagnetics Research M, Vol. 125, 41-49, 2024
Abstract
Three scenarios of high gain bow-tie based antenna array systems are introduced and investigated in this paper. The proposed designs are intended for integration as Tx/Rx antennas in C-band communication systems. Wide operating bandwidth and consistent radiation characteristics over the frequency range from 4 GHz to 5 GHz are defined for the three configurations. A two-stage Wilkinson power divider provides the feed mechanism for the proposed array. The initial structure has four radiating elements, each incorporating seven bow-tie dipoles arranged in a printed Log-Periodic Directional Array (PLPDA) configuration. The gain of the second and third designs is improved by adding resonators in front of the array elements. Furthermore, the second design features triangular-shaped resonators, while the third design employs H-shaped resonators. The designs are simulated and optimized using HFSS and CSTMWS software, and subsequently, they are fabricated using the photolithography technique. The initial design demonstrates an experimental bandwidth from 3.7 GHz to 5.1 GHz and achieves a measured gain of 13.8 dBi at 4.7 GHz. The second and third configurations operate in the frequency bands of 4.3 GHz to 5.3 GHz and 3.7 GHz to 5 GHz, respectively, exhibiting measured gains of 14.1 dBi and 15 dBi. The overall dimensions of the proposed arrays are kept within reasonable limits, with the first array being 2.51λ × 2.74λ, the second being 2.09λ × 2.82λ, and the third being 2.51λ × 2.97λ. The three array designs can be considered as good candidates for C-band communication applications.
Citation
Ayman Elboushi, Anwer S. Abd El-Hameed, Sulaiman Alsuwailem, and Eman Gamal Ouf, "Analysis and Design of a Directive Antenna Array for C-Band Communication Applications," Progress In Electromagnetics Research M, Vol. 125, 41-49, 2024.
doi:10.2528/PIERM24012609
References

1. Shehata, Rania Eid A., Moataza Hindy, Hamdi Elmekati, and Ayman Mohamed Fekry Elboushic, "Design of a beam-steering metamaterial inspired LPDA array for 5G applications," Progress In Electromagnetics Research M, Vol. 117, 151-161, 2023.
doi:10.2528/PIERM23042406

2. Abd El-Hameed, Anwer S., Eman G. Ouf, Ayman Elboushi, Asmaa G. Seliem, and Yuta Izumi, "An improved performance radar sensor for K-band automotive radars," Sensors, Vol. 23, No. 16, 7070, Aug. 2023.
doi:10.3390/s23167070

3. Shehata, Gehan S., Anwer S. Abd El-Hameed, Shereen M. Ebrahim, Mahmoud A. Mohana, and Abbas M. Abbas, "Bow-tie antenna with improved performance for advanced GPR applications," International Journal of Microwave & Optical Technology, Vol. 18, No. 3, 266-274, May 2023.

4. El-Nady, Shaza, Rania R. Elsharkawy, Asmaa I. Afifi, and Anwer S. Abd El-Hameed, "Performance improvement of substrate integrated cavity fed dipole array antenna using ENZ metamaterial for 5G applications," Sensors, Vol. 22, No. 1, 125, 2022.
doi:10.3390/s22010125

5. El-Hameed, Anwer S. Abd and Motoyuki Sato, "Antenna array for Ku-band MIMO GB-SAR," IEEE Access, Vol. 9, 29565-29572, Feb. 2021.
doi:10.1109/ACCESS.2021.3058004

6. Isbell, D., "Log periodic dipole arrays," IRE Transactions on Antennas and Propagation, Vol. 8, No. 3, 260-267, May 1960.

7. Wang, Baixiao, Aixin Chen, and Donglin Su, "An improved fractal tree log-periodic dipole antenna," 2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, 831-834, Singapore, May 2008.

8. Dhruva, T. V., James A. Baskaradas, and K. G. Sujanth Narayan, "Analysis of half-wave dipole antenna with various bending angles," 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 454-457, Dec. 2021.

9. Erman, Fuad, Effariza Hanafi, Eng-Hock Lim, Wan Amirul Wan Mohd Mahyiddin, Sulaiman Wadi Harun, Hassan Umair, Rawan Soboh, and Mohamad Zul Hilmey Makmud, "Miniature compact folded dipole for metal mountable UHF RFID tag antenna," Electronics, Vol. 8, No. 6, 713, Jun. 2019.

10. Purwono, Adi, Varuliantor Dear, Khoirul Huda, and Irham Setyawan, "Configuration of inverted-V dipole NVIS HF antenna for offshore fast patrol boat," 2022 11th Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS), 181-184, Aug. 2022.

11. Ebihara, Satoshi, Hideharu Hanaoka, Takashi Okumura, and Yoshito Wada, "Interference criterion for coaxial-fed circular dipole array antenna in a borehole," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 9, 3510-3526, Sep. 2012.
doi:10.1109/TGRS.2011.2182517

12. Tziris, Emmanouil N., Pavlos I. Lazaridis, Zaharias D. Zaharis, John P. Cosmas, Keyur K. Mistry, and Ian A. Glover, "Optimized planar elliptical dipole antenna for UWB EMC applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 4, 1377-1384, Aug. 2019.
doi:10.1109/TEMC.2019.2923781

13. Faouri, Yanal S., Sarosh Ahmad, Naser Ojaroudi Parchin, Chan Hwang See, and Raed Abd-Alhameed, "A novel meander bowtie-shaped antenna with multi-resonant and rejection bands for modern 5G communications," Electronics, Vol. 11, No. 5, 821, Mar. 2022.
doi:10.3390/electronics11050821

14. Tawk, Y., K. Y. Kabalan, A. El-Hajj, C. G. Christodoulou, and J. Costantine, "A simple multiband printed bowtie antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 557-560, Jun. 2008.
doi:10.1109/LAWP.2008.2001027

15. Wang, Baixiao, Aixin Chen, and Donglin Su, "An improved fractal tree log-periodic dipole antenna," 2008 Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, 831-834, Singapore, May 2008.

16. Anagnostou, Dimitris E., John Papapolymerou, Manos M. Tentzeris, and Christos G. Christodoulou, "A printed log-periodic Koch-dipole array (LPKDA)," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 456-460, Jun. 2008.
doi:10.1109/LAWP.2008.2001765

17. Chen, Jinxi, Jesse Ludwig, and Sungkyun Lim, "Design of a compact log-periodic dipole array using T-shaped top loadings," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1585-1588, Jan. 2017.
doi:10.1109/LAWP.2017.2652125

18. Chang, Lei, Shuai He, Jian Qiang Zhang, and Dan Li, "A compact dielectric-loaded log-periodic dipole array (LPDA) antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2759-2762, Aug. 2017.
doi:10.1109/LAWP.2017.2744983

19. Hsu, Heng-Tung and Ting-Jui Huang, "A koch-shaped log-periodic dipole array (LPDA) antenna for universal ultra-high-frequency (UHF) radio frequency identification (RFID) handheld reader," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4852-4856, Sep. 2013.
doi:10.1109/TAP.2013.2264451

20. Haraz, Osama M., Saleh A. Alshebeili, and Abdel-Razik Sebak, "Low-cost high gain printed log-periodic dipole array antenna with dielectric lenses for V-band applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 6, 541-552, Apr. 2015.
doi:10.1049/iet-map.2014.0319

21. Marathe, Dushyant and Kishore Kulat, "A compact triple-band negative permittivity metamaterial for C, X-band applications," International Journal of Antennas and Propagation, Vol. 2017, Article ID 7515264, Oct. 2017.
doi:10.1155/2017/7515264

22. Kubacki, Roman, Salim Lamari, Miroslaw Czyzewski, and Dariusz Laskowski, "A broadband left-handed metamaterial microstrip antenna with double-fractal layers," International Journal of Antennas and Propagation, Vol. 2017, Article ID 6145865, May 2017.
doi:10.1155/2017/6145865

23. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/TMTT.2000.842037

24. Rahmadani, Fahmi and Achmad Munir, "Microstrip patch antenna miniaturization using artificial magnetic conductor," 2011 6th International Conference on Telecommunication Systems, Services, and Applications (TSSA), 219-223, Oct. 2011.

25. Foroozesh, Alireza and Lotfollah Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 4-20, Jan. 2011.
doi:10.1109/TAP.2010.2090458

26. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 76-79, Jan. 2013.
doi:10.1109/LAWP.2013.2240251

27. Kwon, Oh Heon, Sungwoo Lee, Jong Min Lee, and Keum Cheol Hwang, "A compact, low-profile log-periodic meandered dipole array antenna with an artificial magnetic conductor," International Journal of Antennas and Propagation, Vol. 2018, 1-10, Jun. 2018.
doi:10.1155/2018/7261076

28. Syed, Avez, Muntasir Sheikh, Mohammad Tariqul Islam, and Hatem Rmili, "Metamaterial-loaded 16-printed log periodic antenna array for microwave imaging of breast tumor detection," International Journal of Antennas and Propagation, Vol. 2022, 1-15, Sep. 2022.
doi:10.1155/2022/4086499