Vol. 128
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2024-07-20
Compact Dual-Band Antenna Based on Dual-Cap Metasurface
By
Progress In Electromagnetics Research M, Vol. 128, 11-20, 2024
Abstract
A novel compact dual-band antenna based on dual-cap metasurface (MS) is proposed. By etching circumferential circular ring slots on one side of the substrate and large cruciform slot on the other side, the dual-cap MS operates in two frequency bands. In addition, by placing the dual-cap MS at the back of a circular ring planar antenna which serves as a reflector, the impedance characteristic of the antenna in lower band and gain both in two bands are improved. The results show that this dual-cap MS antenna operates in the Wireless Local Area Network (WLAN) bands of 2.43-2.6 GHz and 5.48-6.05 GHz. Moreover, the maximum gains in lower and upper bands can reach 6.9 and 5.8 dBi, respectively.
Citation
Xue Chen, and Haipeng Dou, "Compact Dual-Band Antenna Based on Dual-Cap Metasurface," Progress In Electromagnetics Research M, Vol. 128, 11-20, 2024.
doi:10.2528/PIERM24042803
References

1. Cai, Tong, Guang-Ming Wang, Xiao-Fei Zhang, and Jun-Peng Shi, "Low-profile compact circularly-polarized antenna based on fractal metasurface and fractal resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1072-1076, 2015.        Google Scholar

2. Zhao, Yi, Xiangyu Cao, Jun Gao, Xu Yao, and Xiao Liu, "A low-RCS and high-gain slot antenna using broadband metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 290-293, 2015.        Google Scholar

3. Cao, Y. F., S. W. Cheung, and T. I. Yuk, "Dual-cap mushroom-like metasurface used in CP reconfigurable monopole antenna for performance enhancement," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5949-5955, 2015.        Google Scholar

4. Feng, Guirong, Lei Chen, Xingsi Xue, and Xiaowei Shi, "Broadband surface-wave antenna with a novel nonuniform tapered metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2902-2905, 2017.        Google Scholar

5. Nie, Nian-Sheng, Xue-Song Yang, Zhi Ning Chen, and Bing-Zhong Wang, "A low-profile wideband hybrid metasurface antenna array for 5G and WiFi systems," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 665-671, 2020.        Google Scholar

6. Zhu, Hai Liang, Sing Wai Cheung, and Tong Ip Yuk, "Mechanically pattern reconfigurable antenna using metasurface," IET Microwaves, Antennas & Propagation, Vol. 9, No. 12, 1331-1336, 2015.        Google Scholar

7. Xu, Peng, Wei Xiang Jiang, Xiao Cai, Shi Hao Bai, and Tie Jun Cui, "An integrated coding-metasurface-based array antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 891-899, 2020.        Google Scholar

8. Chen, Jianfeng, Wei Yuan, Cheng Zhang, Wen Xuan Tang, Lei Wang, Qiang Cheng, and Tie Jun Cui, "Wideband leaky-wave antennas loaded with gradient metasurface for fixed-beam radiations with customized tilting angles," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 161-170, 2020.        Google Scholar

9. Liu, Feng, Jiayin Guo, Luyu Zhao, Guan-Long Huang, Yingsong Li, and Yingzeng Yin, "Dual-band metasurface-based decoupling method for two closely packed dual-band antennas," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 552-557, 2020.        Google Scholar

10. Ahmed, Asif, Md. Rokunuzzaman Robel, and Wayne S. T. Rowe, "Dual-band two-sided beam generation utilizing an EBG-based periodically modulated metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 3307-3312, 2020.        Google Scholar

11. Zheng, Qi, Judao Wang, Peyman PourMohammadi, and Xiaoyan Pang, "Dual-band metasurface-based closely packed antennas by controlling surface wave propagation," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 5, 1633-1637, 2024.        Google Scholar

12. Fan, Yufei, Yang Cheng, and Yuandan Dong, "A wideband shared-aperture dual-band base-station antenna array based on inhomogeneous metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 2, 463-467, 2024.        Google Scholar

13. Sahu, Nibash Kumar and Sanjeev Kumar Mishra, "Polarization-converting metasurface inspired dual-band dual-circularly polarized monopole antennas for off-body communications," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 1, 194-198, 2023.        Google Scholar

14. Kumar, Gaurav, Basudeb Ghosh, Vijay Kumar Singh, and Milind B. Mahajan, "Dual band metasurface polarizer for LP to CP conversion," 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 1-5, Ahmedabad, India, 2023.

15. Gu, Yimin, Xue-Xia Yang, Tian Lou, and Youquan Wu, "Low-profile dual-band magneto-electric dipole antenna loaded with metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 7, 1492-1496, 2022.        Google Scholar

16. Asif, Muhammad, Daniyal Ali Sehrai, Saad Hassan Kiani, Jalal Khan, Mujeeb Abdullah, Muhammad Ibrar, Mohammad Alibakhshikenari, Francisco Falcone, and Ernesto Limiti, "Design of a dual band SNG metamaterial based antenna for LTE 46/WLAN and Ka-band applications," IEEE Access, Vol. 9, 71553-71562, 2021.        Google Scholar

17. Ramli, Muhammad Nazrin, Ping Jack Soh, Mohd Faizal Jamlos, Herwansyah Lago, Norazizan Mohd Aziz, and Azremi Abdullah Al-Hadi, "Dual-band wearable fluidic antenna with metasurface embedded in a PDMS substrate," Applied Physics A, Vol. 123, 149, 2017.        Google Scholar

18. Joshi, Rahil, Ezzaty Faridah Nor Mohd Hussin, Ping Jack Soh, Mohd Faizal Jamlos, Herwansyah Lago, Azremi Abdullah Al-Hadi, and Symon K. Podilchak, "Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN," IEEE Access, Vol. 8, 89468-89478, 2020.        Google Scholar

19. Paracha, Kashif Nisar, Sharul Kamal Abdul Rahim, Ping Jack Soh, Muhammad Ramlee Kamarudin, Kim-Geok Tan, Yew Chiong Lo, and Mohammad Tariqul Islam, "A low profile, dual-band, dual polarized antenna for indoor/outdoor wearable application," IEEE Access, Vol. 7, 33277-33288, 2019.        Google Scholar

20. Faeghi, Pouya, Changiz Ghobadi, Javad Nourinia, and Bal Virdee, "Nanoparticle-coated Vivaldi antenna array for gain enhancement," Applied Physics A, Vol. 129, No. 3, 217, 2023.        Google Scholar

21. Chen, Xudong, Tomasz M. Grzegorczyk, Bae-Ian Wu, Joe Pacheco Jr, and Jin Au Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 016608, 2004.        Google Scholar