Vol. 131
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-01-24
A Compact Wideband Two-Port mm-Wave Antenna for 5G Application
By
Progress In Electromagnetics Research M, Vol. 131, 51-59, 2025
Abstract
This study presents the design of a MIMO (multiple inputs, multiple outputs) antenna for the 5G application. This is an inexpensive, low-profile antenna with a dimension of 9 x 18 x 1 mm3. The highest gain of the antenna in the operating frequency range is 7.79 dBi. This antenna structure provides a minimum isolation of less than -20 dB for the working bandwidth. The antenna's operational bandwidth covers the 26 GHz band mm-wave (millimeter-wave) spectrum, from 26.86 to 31.11 GHz. Its salient features make it appropriate for 5G applications.
Citation
Rajeshwari Malekar, Saffrine Kingsly, Sangeetha Subbaraj, and Hema Raut, "A Compact Wideband Two-Port mm-Wave Antenna for 5G Application," Progress In Electromagnetics Research M, Vol. 131, 51-59, 2025.
doi:10.2528/PIERM24100704
References

1. Kumar, Sumit, Amruta S. Dixit, Rajeshwari R. Malekar, Hema D. Raut, and Laxmikant K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, 163568-163593, 2020.

2. Huang, Huan-Chu, "Overview of antenna designs and considerations in 5G cellular phones," 2018 International Workshop on Antenna Technology (iWAT), 1-4, Nanjing, China, Mar. 2018.

3. Hong, Wei, Zhi Hao Jiang, Chao Yu, Jianyi Zhou, Peng Chen, Zhiqiang Yu, Hui Zhang, Binqi Yang, Xingdong Pang, Mei Jiang, et al., "Multibeam antenna technologies for 5G wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6231-6249, Dec. 2017.

4. Khan, Rizwan, Azremi Abdullah Al-Hadi, Ping Jack Soh, Muhammad Ramlee Kamarudin, Mohd Tarmizi Ali, et al., "User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas," IEEE Access, Vol. 6, 77695-77715, 2018.

5. Liu, Haiwen, Wenjuan Yang, Anxue Zhang, Shuangshuang Zhu, Zhengbiao Wang, and Taotao Huang, "A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications," IEEE Access, Vol. 6, 76282-76288, 2018.

6. Nadeem, Iram and Dong-You Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2018.

7. Balanis, C. A., "Microstrip antennas," Antenna Theory: Analysis and Design, 843-848, 3rd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2005.

8. Zhang, Yimin, Kazuhiro Hirasawa, and K. Fujimoto, "Signal bandwidth consideration of mutual coupling effects on adaptive array performance," IEEE Transactions on Antennas and Propagation, Vol. 35, No. 3, 337-339, Mar. 1987.

9. Singh, Hema, H. L. Sneha, and R. M. Jha, "Mutual coupling in phased arrays: A review," International Journal of Antennas and Propagation, Vol. 2013, No. 1, 348123, 2013.

10. Abdullah, Muhammad and Slawomir Koziel, "A novel versatile decoupling structure and expedited inverse-model-based re-design procedure for compact single- and dual-band MIMO antennas," IEEE Access, Vol. 9, 37656-37667, 2021.

11. Bazaka, Kateryna and Mohan V. Jacob, "Implantable devices: Issues and challenges," Electronics, Vol. 2, No. 1, 1-34, Dec. 2012.

12. Ullah, Ubaid, Muath Al-Hasan, Slawomir Koziel, and Ismail Ben Mabrouk, "Series-slot-fed circularly polarized multiple-input-multiple-output antenna array enabling circular polarization diversity for 5G 28 GHz indoor applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5607-5616, Sep. 2021.

13. Zhang, Yin, Jing-Ya Deng, Ming-Jie Li, Dongquan Sun, and Li-Xin Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-Wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, 2019.

14. Islam, Saiful, Muhammad Zada, and Hyoungsuk Yoo, "Low-pass filter based integrated 5G smartphone antenna for sub-6-GHz and mm-Wave bands," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 9, 5424-5436, Sep. 2021.

15. Pan, Yong Mei, Xin Qin, Yu Xiang Sun, and Shao Yong Zheng, "A simple decoupling method for 5G millimeter-wave MIMO dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2224-2234, Apr. 2019.

16. Girjashankar, Pandey Rajat and Trushit Upadhyaya, "Substrate integrated waveguide fed dual band quad-elements rectangular dielectric resonator MIMO antenna for millimeter wave 5G wireless communication systems," AEU --- International Journal of Electronics and Communications, Vol. 137, 153821, 2021.

17. Hussain, Niamat, Wahaj Abbas Awan, Wael Ali, Syeda Iffat Naqvi, Abir Zaidi, and Tuan Tu Le, "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU --- International Journal of Electronics and Communications, Vol. 132, 153612, 2021.

18. Esmail, Bashar A. F. and Slawomir Koziel, "Design and optimization of metamaterial-based dual-band 28/38 GHz 5G MIMO antenna with modified ground for isolation and bandwidth improvement," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 5, 1069-1073, May 2023.

19. Singh, Amit Kumar and Srikanta Pal, "Compact self-isolated extremely low ECC folded-SIW-based slot MIMO antenna for 5G application," IEEE Antennas and Wireless Propagation Letters, Vol. 23, No. 1, 194-198, Jan. 2024.

20. Cuneray, Kutay, Nursel Akcam, Tayfun Okan, and Galip Orkun Arican, "28/38 GHz dual-band MIMO antenna with wideband and high gain properties for 5G applications," AEU --- International Journal of Electronics and Communications, Vol. 162, 154553, Apr. 2023.

21. Alieldin, Ahmed, Yi Huang, Manoj Stanley, Sumin David Joseph, and Dajun Lei, "A 5G MIMO antenna for broadcast and traffic communication topologies based on pseudo inverse synthesis," IEEE Access, Vol. 6, No. 1, 65935-65944, 2018.