Vol. 131
Latest Volume
All Volumes
PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2025-01-26
Design of Metamaterial Absorber Independent in Incident Angle for Solar Cell Applications
By
Progress In Electromagnetics Research M, Vol. 131, 71-79, 2025
Abstract
This study proposes designing and developing a metamaterial absorber that improves the efficiency of solar cells. The design includes circular forms with rectangle gaps etched on the upper surface of an FR-4 substrate, with a copper sheet serving as an isolating substrate for the ground beneath. The structure operates in the tera frequency ranges to accommodate all infrared wavelengths of the sun's spectrum. Furthermore, the constructed metamaterial unit cell is used to build a metamaterial array absorber, which increases the rate of energy harvest from the sun spectrum. The two designs showed absorption rates of approximately 96.75% and 99.85% at 94.85 THz and 109.08 THz resonant frequencies respectively. In addition, a top surface of microwave cross-polarization conversion (CPC) is also generated and simulated. The structure of the proposed microwave unit cell consists of the same metamaterial absorber design. Efficient cross-conversion is achieved across a wide frequency band (9 GHz to 15 GHz), with polarization conversion effectiveness exceeding 99%. The suggested CPC design has three resonance bands with 50% fractional bandwidth (FBW) and achieves a stable polarization response at oblique incidence angles up to 35˚.
Citation
Asmaa El-Sayed Mohammed, Ayad Shohdy, Shazly Abdo Mohammed, and Ahmed Mohamed Montaser, "Design of Metamaterial Absorber Independent in Incident Angle for Solar Cell Applications," Progress In Electromagnetics Research M, Vol. 131, 71-79, 2025.
doi:10.2528/PIERM24111603
References

1. Mulla, B. and C. Sabah, "Perfect metamaterial absorber design for solar cell applications," Waves in Random and Complex Media, Vol. 25, No. 3, 382-392, 2015.

2. Bagmanci, Mehmet, Muharrem Karaaslan, Emin Unal, Oguzhan Akgol, Mehmet Bakir, and Cumali Sabah, "Solar energy harvesting with ultra-broadband metamaterial absorber," International Journal of Modern Physics B, Vol. 33, No. 8, 1950056, 2019.

3. Rufangura, Patrick and Cumali Sabah, "Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application," Journal of Alloys and Compounds, Vol. 680, 473-479, 2016.

4. Hamdy, Hagar, Ghada Yassin Abdel-Latif, M. El-Agamy, H. A. El-Mikati, Mohamed Farhat O. Hameed, and S. S. A. Obayya, "Wavelength-selective metamaterial absorber based on 2D split rhombus grating for thermophotovoltic solar cell," Optical and Quantum Electronics, Vol. 54, No. 2, 117, 2022.

5. Dincer, Furkan, Oguzhan Akgol, Muharrem Karaaslan, Emin Unal, and Cumali Sabah, "Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime," Progress In Electromagnetics Research, Vol. 144, 93-101, 2014.

6. Li, Jichun, Yitung Chen, and Yang Liu, "Mathematical simulation of metamaterial solar cells," Advances in Applied Mathematics and Mechanics, Vol. 3, No. 6, 702-715, 2011.

7. Herold, Victor Du John, Blessy Antony, Neelapala Nava Teja, and Vinod Gandikota, "Wide band metamaterial absorber for gallium arsenide GaAs solar cells," 2021 3rd International Conference on Signal Processing and Communication (ICPSC), 578-580, Coimbatore, India, 2021.

8. Zhang, Yubin, Zao Yi, Xinyue Wang, Peixin Chu, Weitang Yao, Zigang Zhou, Shubo Cheng, Zhimin Liu, Pinghui Wu, Miao Pan, and Yougen Yi, "Dual band visible metamaterial absorbers based on four identical ring patches," Physica E: Low-dimensional Systems and Nanostructures, Vol. 127, 114526, 2021.

9. Yu, Jing, Tingting Lang, and Huateng Chen, "All-metal terahertz metamaterial absorber and refractive index sensing performance," Photonics, Vol. 8, No. 5, 164, 2021.

10. Tao, Hu, Christopher M. Bingham, D. Pilon, Kebin Fan, Andrew C. Strikwerda, David Shrekenhamer, Willie J. Padilla, Xin Zhang, and Richard D. Averitt, "A dual band terahertz metamaterial absorber," Journal of Physics D: Applied Physics, Vol. 43, No. 22, 225102, 2010.

11. Cho, A., "Voilà! Cloak of invisibility unveiled," Science, Vol. 314, No. 5798, 403, 2006.
doi:10.1126/science.314.5798.403

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

13. Fang, Nicholas, Hyesog Lee, Cheng Sun, and Xiang Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759

14. Berland, B., "Photovoltaic technologies beyond the horizon: Optical rectenna solar cell," National Renewable Energy Laboratory (NREL), 2003.

15. Sabaawi, Ahmed M. A., Charalampos C. Tsimenidis, and Bayan S. Sharif, "Infra-red nano-antennas for solar energy collection," 2011 Loughborough Antennas & Propagation Conference, 1-4, Loughborough, UK, 2011.

16. Bozzetti, M., G. de Candia, M. Gallo, O. Losito, L. Mescia, and F. Prudenzano, "Analysis and design of a solar rectenna," 2010 IEEE International Symposium on Industrial Electronics, Bari, Italy, 2010.

17. Zhang, Pengyu, Guoquan Chen, Zheyu Hou, Yizhuo Zhang, Jian Shen, Chaoyang Li, Maolin Zhao, Zhuozhen Gao, Zhiqi Li, and Tingting Tang, "Ultra-broadband tunable terahertz metamaterial absorber based on double-layer vanadium dioxide square ring arrays," Micromachines, Vol. 13, No. 5, 669, 2022.

18. Ustunsoy, Mehmet Pasa and Cumali Sabah, "Dual-band high-frequency metamaterial absorber based on patch resonator for solar cell applications and its enhancement with graphene layers," Journal of Alloys and Compounds, Vol. 687, 514-520, 2016.

19. Tang, Jingyao, Zhongyin Xiao, and Kaikai Xu, "Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region," Optical Materials, Vol. 60, 142-147, 2016.

20. Montaser, Ahmed M., "Design of multiband PIFA with low SAR value for all commercial mobile communication bands," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 3, 194-201, 2015.

21. El Dein, Adel Z., Adel B. Abdel-Rahman, Raafat E. Fat-Helbary, and A. M. Montaser, "Tunable-compact bandstop defected ground structure (DGS) with lumped element," 2010 7th International Multi-Conference on Systems, Signals and Devices, 1-3, Amman, Jordan, 2010.

22. Montaser, Ahmed M., Korany R. Mahmoud, Adel B. Abdel-Rahman, and Hamdy A. Elmikati, "Design Bluetooth and notched-UWB E-shape antenna using optimization techniques," Progress In Electromagnetics Research B, Vol. 47, 279-295, 2013.

23. Mahmoud, Korany R., Abdullah Baz, Wajdi Alhakami, Hosam Alhakami, and Ahmed M. Montaser, "The performance of circularly polarized phased sub-array antennas for 5G laptop devices investigating the radiation effects," Progress In Electromagnetics Research C, Vol. 110, 267-283, 2021.
doi:10.2528/PIERC21012005

24. Ghattas, Ayad Shohdy W., Ayman Ayd R. Saad, and Elsayed Esam M. Khaled, "Compact patch antenna array for 60 GHz millimeter-wave broadband applications," Wireless Personal Communications, Vol. 114, No. 4, 2821-2839, 2020.

25. Rufangura, Patrick and Cumali Sabah, "Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications," Journal of Alloys and Compounds, Vol. 671, 43-50, 2016.

26. Akbari, Mohammad, Mohammadmahdi Farahani, Abdel-Razik Sebak, and Tayeb A. Denidni, "Ka-band linear to circular polarization converter based on multilayer slab with broadband performance," IEEE Access, Vol. 5, 17927-17937, 2017.

27. Akbari, Mohammad, Hamdan Abo Ghalyon, Mohammadmahdi Farahani, Abdel-Razik Sebak, and Tayeb A. Denidni, "Spatially decoupling of CP antennas based on FSS for 30-GHz MIMO systems," IEEE Access, Vol. 5, 6527-6537, 2017.

28. Akbari, M., S. Gupta, M. Farahani, A. R. Sebak, and T. A. Denidni, "Gain enhancement of circularly polarized dielectric resonator antenna based on FSS superstrate for MMW applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 12, 5542-5546, 2016.

29. Moghadam, Marjan Sadat Jalali, Mohammad Akbari, Fereshteh Samadi, and Abdel-Razik Sebak, "Wideband cross polarization rotation based on reflective anisotropic surfaces," IEEE Access, Vol. 6, 15919-15925, 2018.

30. Yu, Nanfang, Patrice Genevet, Francesco Aieta, Mikhail A. Kats, Romain Blanchard, Guillaume Aoust, Jean-Philippe Tetienne, Zeno Gaburro, and Federico Capasso, "Flat optics: Controlling wavefronts with optical antenna metasurfaces," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 3, 4700423, 2013.

31. Grady, Nathaniel K., Jane E. Heyes, Dibakar Roy Chowdhury, Yong Zeng, Matthew T. Reiten, Abul K. Azad, Antoinette J. Taylor, Diego A. R. Dalvit, and Hou-Tong Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

32. Li, Guixin, Ming Kang, Shumei Chen, Shuang Zhang, Edwin Yue-Bun Pun, Kok Wai Cheah, and Jensen Li, "Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light," Nano Letters, Vol. 13, No. 9, 4148-4151, 2013.

33. Yang, Yuanmu, Wenyi Wang, Parikshit Moitra, Ivan I. Kravchenko, Dayrl P. Briggs, and Jason Valentine, "Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation," Nano Letters, Vol. 14, No. 3, 1394-1399, 2014.

34. Chen, Hong-Ya, Jia-Fu Wang, Hua Ma, Shao-Bo Qu, Jie-Qiu Zhang, Zhuo Xu, and An-Xue Zhang, "Broadband perfect polarization conversion metasurfaces," Chinese Physics B, Vol. 24, No. 1, 014201, 2015.

35. Grady, Nathaniel K., Jane E. Heyes, Dibakar Roy Chowdhury, Yong Zeng, Matthew T. Reiten, Abul K. Azad, Antoinette J. Taylor, Diego A. R. Dalvit, and Hou-Tong Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

36. Sun, Wujiong, Qiong He, Jiaming Hao, and Lei Zhou, "A transparent metamaterial to manipulate electromagnetic wave polarizations," Optics Letters, Vol. 36, No. 6, 927-929, 2011.

37. Ma, Hui Feng, Gui Zhen Wang, Gu Sheng Kong, and Tie Jun Cui, "Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces," Optical Materials Express, Vol. 4, No. 8, 1717-1724, 2014.

38. Zheng, Qi, Chenjiang Guo, Haixiong Li, and Jun Ding, "Wideband and high efficiency reflective polarization rotator based on metasurface," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 3, 265-273, 2018.

39. Khan, Muhammad Ismail, Qaisar Fraz, and Farooq A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, 045103, 2017.

40. Zhao, Yang and Andrea Alù, "Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates," Nano Letters, Vol. 13, No. 3, 1086-1091, 2013.

41. Sieber, P. E. and D. H. Werner, "Reconfigurable broadband infrared circularly polarizing reflectors based on phase changing birefringent metasurfaces," Optics Express, Vol. 21, No. 1, 1087-1100, 2013.

42. Grady, Nathaniel K., Jane E. Heyes, Dibakar Roy Chowdhury, Yong Zeng, Matthew T. Reiten, Abul K. Azad, Antoinette J. Taylor, Diego A. R. Dalvit, and Hou-Tong Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

43. Wu, Linxiao, Meng Zhang, Bo Zhu, Junming Zhao, Tian Jiang, and Yijun Feng, "Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure," Applied Physics B, Vol. 117, 527-531, 2014.

44. Zhu, H. L., S. W. Cheung, Kwok Lun Chung, and T. I. Yuk, "Linear-to-circular polarization conversion using metasurface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4615-4623, 2013.

45. Kundu, Debidas, Akhilesh Mohan, and Ajay Chakrabarty, "Ultrathin high-efficiency X-band reflective polarization converter using sunken double arrowhead metasurface," 2016 Asia-Pacific Microwave Conference (APMC), 1-4, New Delhi, India, 2016.

46. Khan, M. Ismail, Farooq A. Tahir, and Rashid Saleem, "An angularly stable tri-band reflective cross-polarization conversion anisotropic metasurface," 2017 Progress In Electromagnetics Research Symposium --- Fall (PIERS --- FALL), 1735-1737, Singapore, Nov. 2017.

47. Rashid, Aamir, Mudassir Murtaza, Syed Azhar Ali Zaidi, Hammad Zaki, and Farooq A. Tahir, "A single-layer, wideband and angularly stable metasurface based polarization converter for linear-to-linear cross-polarization conversion," PLOS One, Vol. 18, No. 1, e0280469, 2023.

48. Pandey, Anchal and Shashi B. Rana, "Review of metamaterials, types and design approaches," An International Journal of Engineering Sciences, Vol. 17, 359-363, 2016.