Vol. 153
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-03-17
Synthesis of Antenna Array Based on Hybrid Improved Sparrow Search Algorithm and Convex Programming
By
Progress In Electromagnetics Research C, Vol. 153, 247-255, 2025
Abstract
This paper presents a hybrid method that combines the improved sparrow search algorithm (ISSA) and convex programming (CP) to synthesize sparse arrays under multiple design constraints. The proposed method initiates with introducing ISSA, which establishes a sparse array layout while effectively reducing peak sidelobe levels (PSLLs) through optimizing nonuniform element positions. Subsequently, when the position is fixed, the subproblem of minimizing PSLL is transformed into a convex problem with beamwidth constraint, employing CP to determine optimal excitation amplitudes. The PSLL serves as the fitness function in ISSA to simultaneously optimize both element position and excitation amplitude, to achieve PSLL reduction of sparse array. Afterward, some examples of linear and rectangular planar arrays with low sidelobe are simulated and discussed in detail. Numerical experiments show the effectiveness and reliability of ISSA-CP, which can further reduce PSLL while saving array elements. Ultimately, utilizing the numerical simulation results as a foundation, a full-wave simulation is undertaken to verify the practicality of the novel hybrid method.
Citation
Qi Tang, Bin Wang, and Xue Tian, "Synthesis of Antenna Array Based on Hybrid Improved Sparrow Search Algorithm and Convex Programming," Progress In Electromagnetics Research C, Vol. 153, 247-255, 2025.
doi:10.2528/PIERC25011903
References

1. Zhao, Xiaowen, Yunhua Zhang, and Qingshan Yang, "A hybrid algorithm for synthesizing linear sparse arrays," Progress In Electromagnetics Research C, Vol. 63, 75-83, 2016.

2. Aslan, Yanki, Antoine Roederer, and Alexander Yarovoy, "System advantages of using large-scale aperiodic array topologies in future mm-wave 5G/6G base stations: An interdisciplinary look," IEEE Systems Journal, Vol. 16, No. 1, 1239-1248, Mar. 2022.

3. He, Yuanzhi and Changxu Wang, "Optimization design for sparse planar array in satellite communications," Electronics, Vol. 12, No. 8, 1763, Apr. 2023.

4. Roy, Gourab Ghosh, Swagatam Das, Prithwish Chakraborty, and Ponnuthurai N. Suganthan, "Design of non-uniform circular antenna arrays using a modified invasive weed optimization algorithm," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 110-118, Jan. 2011.

5. Kumar, B. P. and G. R. Branner, "Design of unequally spaced arrays for performance improvement," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 3, 511-523, Mar. 1999.

6. Kumar, B. P. and G. R. Branner, "Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 621-634, Feb. 2005.

7. Keizer, Will P. M. N., "Linear array thinning using iterative FFT techniques," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2757-2760, Aug. 2008.

8. Liu, Yanhui, Zaiping Nie, and Qing Huo Liu, "Reducing the number of elements in a linear antenna array by the matrix pencil method," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2955-2962, Sep. 2008.

9. Echeveste, J. Ignacio, Miguel A. González de Aza, and Juan Zapata, "Shaped beam synthesis of real antenna arrays via finite-element method, floquet modal analysis, and convex programming," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1279-1286, Apr. 2016.

10. Zhang, Fenggan, Weimin Jia, and Minli Yao, "Linear aperiodic array synthesis using differential evolution algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 797-800, 2013.

11. Cui, Chao-Yi, Yong-Chang Jiao, Li Zhang, Liang Lu, and Huan Zhang, "Synthesis of subarrayed monopluse arrays with contiguous elements using a DE algorithm," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4340-4345, Aug. 2017.

12. Liu, Heng, Hongwei Zhao, Weimei Li, and Bo Liu, "Synthesis of sparse planar arrays using matrix mapping and differential evolution," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1905-1908, 2016.

13. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 7, 993-999, Jul. 1994.

14. Chen, Kesong, Zishu He, and Chunlin Han, "A modified real GA for the sparse linear array synthesis with multiple constraints," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2169-2173, Jul. 2006.

15. Shi, Li, Yun-Kai Deng, Hui-Feng Sun, Robert Wang, Jia-Qiu Ai, and He Yan, "An improved real-coded genetic algorithm for the beam forming of spaceborne SAR," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 3034-3040, Jun. 2012.

16. Yang, Jianhua, Feng Yang, Peng Yang, and Zhiyu Xing, "Synthesis of clustered concentric ring arrays through joint optimization of multi-parameters," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 1, 840-851, Jan. 2023.

17. Jia, Weimin, Zhiqiang Lin, Minli Yao, et al., "A synthesis technique for linear sparse arrays with multiple constraints," Acta Electronica Sinica, Vol. 41, No. 5, 926-930, 2013.

18. Zhao, Heng, Yong-Ling Ban, Yanhui Liu, Jun Hu, and Zaiping Nie, "Go-caterpillar mutation and its optimization algorithm for synthesis of large-scale sparse planar arrays," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 3, 2194-2207, Mar. 2023.

19. Wandale, Steven and Koichi Ichige, "Simulated annealing assisted sparse array selection utilizing deep learning," IEEE Access, Vol. 9, 156907-156914, 2021.

20. Wang, Bin, Xue Tian, and Kui Tao, "Synthesis of sparse uniformly excited concentric ring arrays using the chaos sparrow search algorithm," International Journal of Antennas and Propagation, Vol. 2023, No. 1, 2926111, May 2023.

21. Tian, Xue, Bin Wang, Kui Tao, and Ke Li, "An improved synthesis of sparse planar arrays using density-weighted method and chaos sparrow search algorithm," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 5, 4339-4349, May 2023.

22. Chen, Kesong, Xiaohua Yun, Zishu He, and Chunlin Han, "Synthesis of sparse planar arrays using modified real genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1067-1073, Apr. 2007.

23. Dai, Dingcheng, Minli Yao, Hongguang Ma, Wei Jin, and Fenggan Zhang, "An asymmetric mapping method for the synthesis of sparse planar arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 70-73, Jan. 2018.

24. Boyd, S. P. and L. Vandenberghe, Convex Optimization, Cambridge University Press, New York, UK, 2004.
doi:10.1017/CBO9780511804441

25. Lebret, H. and S. Boyd, "Antenna array pattern synthesis via convex optimization," IEEE Transactions on Signal Processing, Vol. 45, No. 3, 526-532, Mar. 1997.

26. Nai, Siew Eng, Wee Ser, Zhu Liang Yu, and Huawei Chen, "Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 3923-3930, Dec. 2010.

27. Angeletti, Piero and Giovanni Toso, "Optimal amplitude-density synthesis of linear aperiodic arrays," IEEE Transactions on Antennas and Propagation, Vol. 71, No. 6, 4903-4918, Jun. 2023.

28. Battaglia, Giada M., Gennaro G. Bellizzi, Andrea F. Morabito, Gino Sorbello, and Tommaso Isernia, "A general effective approach to the synthesis of shaped beams for arbitrary fixed-geometry arrays," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2404-2422, 2019.

29. Isernia, T., F. J. A. Pena, O. M. Bucci, M. D'Urso, J. F. Gomez, and J. A. Rodriguez, "A hybrid approach for the optimal synthesis of pencil beams through array antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2912-2918, Nov. 2004.

30. Cui, Chao-Yi, Yong-Chang Jiao, and Li Zhang, "Synthesis of some low sidelobe linear arrays using hybrid differential evolution algorithm integrated with convex programming," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2444-2448, 2017.

31. CVX Research, Inc., "CVX: MATLAB software for disciplined convex programming," Version 2.2, Apr. 2011, http://cvxr.com/cvx.