Vol. 155
Latest Volume
All Volumes
PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2025-04-22
Ternary B2O3-TeO2 -BaO Glass as a Shielding Case
By
Progress In Electromagnetics Research C, Vol. 155, 1-9, 2025
Abstract
This study investigates the properties of a ternary B2O3-TeO2-BaO glass system, prepared through the melt-quenched technique. The chemical formula used is (50 - x/2)B2O3 + (50 - x/2)TeO2 + xBaO, with x varying from 15 to 35 mol.%. The research explores how the gamma and neutron radiation shielding capabilities were analyzed. It finds that higher BaO content enhances gamma-ray shielding but does not significantly affect neutron shielding. The glass sample BTB35 emerged as the optimized candidate among the developed samples for gamma radiation shielding applications. Also, the obtained results for the MFP was compared to commercial shielding glasses, and other measurements on glasses show the superiority of BTB35 as commercial transparent radiation shielding glass.
Citation
Samar M. Ibrahim, Yara Abdelghany, Maged M. Kassab, Mostafa M. Radwan, and Ahmed Abdel-Latif M, "Ternary B2O3-TeO2 -BaO Glass as a Shielding Case," Progress In Electromagnetics Research C, Vol. 155, 1-9, 2025.
doi:10.2528/PIERC25021705
References

1. Albino, Vito, Lorenzo Ardito, Rosa Maria Dangelico, and Antonio Messeni Petruzzelli, "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Vol. 135, 836-854, 2014.

2. Hong, Sanghyun, Corey J. A. Bradshaw, and Barry W. Brook, "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Vol. 143, 451-459, 2015.

3. Prăvălie, Remus and Georgeta Bandoc, "Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications," Journal of Environmental Management, Vol. 209, 81-92, 2018.

4. Heffron, Raphael J., Stephen F. Ashley, and William J. Nuttall, "The global nuclear liability regime post Fukushima Daiichi," Progress in Nuclear Energy, Vol. 90, 1-10, 2016.

5. Lovering, Jessica R., Arthur Yip, and Ted Nordhaus, "Historical construction costs of global nuclear power reactors," Energy Policy, Vol. 91, 371-382, 2016.

6. Abdullah, Muhd Afiq Hizami, Raizal Saifulnaz Muhammad Rashid, Mugahed Amran, Farzad Hejazii, N. M. Azreen, Roman Fediuk, Yen Lei Voo, Nikolai Ivanovich Vatin, and Mohd Idzat Idris, "Recent trends in advanced radiation shielding concrete for construction of facilities: Materials and properties," Polymers, Vol. 14, No. 14, 2830, 2022.

7. Choppin, Gregory, Jan-Olov Liljenzin, and Jan Rydberg, Radiochemistry and Nuclear Chemistry: Of Nuclear Chemistry, Theory and Applications, Elsevier, 2016.

8. Valković, V., "Radiation safety," Radioactivity in the Environment, Vol. 23, 259-303, 2000.
doi:10.1016/B978-044482954-2/50006-X

9. Ogawa, Masanori, Yoshiaki Nakajima, Ryuichi Kubota, and Yoko Endo, "Two cases of acute lead poisoning due to occupational exposure to lead," Clinical Toxicology, Vol. 46, No. 4, 332-335, 2008.

10. Hendrie, J. M., "Nuclear power plants: Structure and function," Bulletin of the New York Academy of Medicine, Vol. 59, No. 10, 870, 1983.

11. Nikbin, Iman M., Mojtaba Shad, Gholam Ali Jafarzadeh, and Soudabeh Dezhampanah, "An experimental investigation on combined effects of nano-WO3 and nano-Bi2O3 on the radiation shielding properties of magnetite concretes," Progress in Nuclear Energy, Vol. 117, 103103, 2019.

12. Nikbin, Iman M., Sadegh Mehdipour, Soudabeh Dezhampanah, Reza Mohammadi, Reza Mohebbi, Hamid Habibi Moghadam, and Ali Sadrmomtazi, "Effect of high temperature on mechanical and gamma ray shielding properties of concrete containing nano-TiO2," Radiation Physics and Chemistry, Vol. 174, 108967, 2020.

13. Azreen, N. M., Raizal S. M. Rashid, Y. H. Mugahed Amran, Y. L. Voo, M. Haniza, M. Hairie, Rayed Alyousef, and Hisham Alabduljabbar, "Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage," Construction and Building Materials, Vol. 263, 120161, 2020.

14. Janković, Ksenija, Srboljub Stanković, Dragan Bojović, Marko Stojanović, and Lana Antić, "The influence of nano-silica and barite aggregate on properties of ultra high performance concrete," Construction and Building Materials, Vol. 126, 147-156, 2016.

15. Binici, Hanifi, "Durability of heavyweight concrete containing barite," International Journal of Materials Research, Vol. 101, No. 8, 1052-1059, 2010.

16. Oto, Berna, Nergiz Yıldız, Fatma Akdemir, and Esra Kavaz, "Investigation of gamma radiation shielding properties of various ores," Progress in Nuclear Energy, Vol. 85, 391-403, 2015.

17. Akkurt, I., C. Basyigit, S. Kilincarslan, B. Mavi, and A. Akkurt, "Radiation shielding of concretes containing different aggregates," Cement and Concrete Composites, Vol. 28, No. 2, 153-157, 2006.

18. Shah, Aishah Zarzali, Mohd Hafiz Mohd Zaid, Khamirul Amin Matori, Yazid Yaakob, Abdul Rahman Sarmani, and Rosdiyana Hisam, "Comprehensive study on structural, elastic and radiation shielding abilities of novel quaternary Bi2O3-TeO2-Li2O-Al2O3 glasses," Progress in Nuclear Energy, Vol. 171, 105191, 2024.

19. Sayyed, M. I., Y. Al-Hadeethi, Maha M. AlShammari, Moustafa Ahmed, Saleh H. Al-Heniti, and Y. S. Rammah, "Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2-B2O3-ZnO-Li2O3-Bi2O3," Ceramics International, Vol. 47, No. 1, 611-618, 2021.

20. Rajesh, D., Y. C. Ratnakaram, M. Seshadri, and A. Balakrishna, "Luminescence properties of Sm3+ impurities in strontium lithium bismuth borate glasses," AIP Conference Proceedings, Vol. 1447, No. 1, 581-582, 2012.

21. Annapoorani, K., Ch. Basavapoornima, N. Suriya Murthy, and K. Marimuthu, "Investigations on structural and luminescence behavior of Er3+ doped Lithium Zinc borate glasses for lasers and optical amplifier applications," Journal of Non-Crystalline Solids, Vol. 447, 273-282, 2016.

22. Arora, Ritika, Navjeet Kaur, Harpreet Singh, Dinesh Kumar, Vijeta Bhatia, and Supreet Pal Singh, "B2O3-TeO2-ZnO-Na2O-Nd2O3 glass matrices: A comprehensive study of physical, structural, optical, and thermoluminescence properties," Materials Chemistry and Physics, Vol. 313, 128783, 2024.

23. Laxmikanth, C., Abely M. Elias, Seba Sichone, and Benard Mwankemwa, "Tailoring structural, thermal, and optical properties of Tm3+-doped borotellurite glasses through Bi2O3 incorporation for optical fiber construction," Next Materials, Vol. 6, 100274, 2025.

24. Asri, Mehdi, Maria Ahmadi, and Vahid Zanganeh, "Study of optical properties and comprehensive shielding behaviors for neutron and gamma-ray of 60Bi2O3-(40-x) B2O3-xBaO glass system," Results in Physics, Vol. 52, 106824, 2023.

25. Yin, Shiyu, Hao Wang, Aifeng Li, Zhongjian Ma, and Yintong He, "Study on radiation shielding properties of new barium-doped zinc tellurite glass," Materials, Vol. 15, No. 6, 2117, 2022.

26. Abdelghany, Y. A., M. M. Kassab, M. M. Radwan, et al. "Investigation of optical, mechanical, and shielding properties of zirconia glass capsule," Progress in Nuclear Energy, Vol. 154, 104457, 2022.

27. Şakar, Erdem, Özgür Fırat Özpolat, Bünyamin Alım, M. I. Sayyed, and Murat Kurudirek, "Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry," Radiation Physics and Chemistry, Vol. 166, 108496, 2020.

28. Gökçe, H. S., O. Güngör, and H. Yılmaz, "An online software to simulate the shielding properties of materials for neutrons and photons: NGCal," Radiation Physics and Chemistry, Vol. 185, 109519, 2021.

29. Alhassan, Muhammad, Shamsuddeen Idris Muazu, and Habibu Ahmad Ibrahim, "Construction of mathematical equation to predict the densities of BaO-B2O3-Bi2O3 glass system using the percentage weights of its constituents," World Journal of Advanced Engineering Technology and Sciences, Vol. 8, No. 1, 090-096, 2023.
doi:10.30574/wjaets.2023.8.1.0016

30. Alshamari, Awatif, M. H. A. Mhareb, N. Alonizan, M. I. Sayyed, Nidal Dwaikat, Ibrahim Alrammah, M. Kh. Hamad, and Q. A. Drmosh, "Gamma-ray-induced changes in the radiation shielding, structural, mechanical, and optical properties of borate, tellurite, and borotellurite glass systems modified with barium and bismuth oxide," Optik, Vol. 281, 170829, 2023.

31. Al-Shelkamy, Samah A., Hector Rene Vega-Carrillo, Zhongliang Xie, F. M. El-Hossary, E. S. Mosa, Amir A. Mahdy, Omayma Elkady, M. Abdel Ghafaar, et al. "Mechanical and radiation shielding characterization of W-based alloys for advanced nuclear unit," Applied Radiation and Isotopes, Vol. 201, 110995, 2023.

32. Al-Buriahi, Mohammed Sultan and Baris T. Tonguc, "Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography," Radiation Physics and Chemistry, Vol. 166, 108507, 2020.

33. Abdel-Latif, M. A. and Kassab, "Effect of chromium contents on radiation shielding and macroscopic cross-section in steel alloys," Applied Radiation and Isotopes, Vol. 186, 110263, 2022.

34. Monazie, Aliaa M., Ahmed M. Al Kaisy, A. F. Tawfic, Samah A. Al-Shelkamy, et al. "Shielding and dosimetry parameters for aluminum carbon steel," Applied Radiation and Isotopes, Vol. 201, 111022, 2023.

35. Al-Buriahi, M. S., F. I. El-Agawany, C. Sriwunkum, Hakan Akyıldırım, Halil Arslan, B. T. Tonguc, R. El-Mallawany, and Y. S. Rammah, "Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses," Physica B: Condensed Matter, Vol. 581, 411946, 2020.
doi:10.1016/j.physb.2019.411946

36. Abdel-Latif, Ahmed, M. Kassab, M. I. Sayyed, and H. O. Tekin, "Optimizing the shielding properties of strength-enhanced concrete containing marble," Papers in Physics, Vol. 12, 120005-120005, 2020.
doi:10.4279/pip.120005

37. Tamam, Nissren, Maryam Al Huwayz, Z. A. Alrowaili, Norah Alwadai, Khadijah Mohammedsaleh Katubi, Mohammed S. Alqahtani, I. O. Olarinoye, and M. S. Al-Buriahi, "Radiation attenuation of boro-tellurite glasses for efficient shielding applications," Applied Radiation and Isotopes, Vol. 203, 111080, 2024.

38. Rammah, Y. S., K. A. Mahmoud, M. I. Sayyed, F. I. El-Agawany, and R. El-Mallawany, "Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnONa2O–V2O5: Synthesis, optical, physical and gamma photon attenuation properties," Journal of Non-Crystalline Solids, Vol. 534, 119944, 2020.

39. El-Khayatt, A. M., "NXcom-A program for calculating attenuation coefficients of fast neutrons and gamma-rays," Annals of Nuclear Energy, Vol. 38, No. 1, 128-132, 2011.

40. El-Khayatt, A. M. and A. El-Sayed Abdo, "MERCSF-N: A program for the calculation of fast neutron removal cross sections in composite shields," Annals of Nuclear Energy, Vol. 36, No. 6, 832-836, 2009.

41. El-Khayatt, A. M., "Calculation of fast neutron removal cross-sections for some compounds and materials," Annals of Nuclear Energy, Vol. 37, No. 2, 218-222, 2010.

42. Elmahroug, Y., B. Tellili, and C. Souga, "Calculation of fast neutron removal cross-sections for different shielding materials," International Journal of Physics and Research (IJPR), Vol. 3, No. 2, 7-16, 2013.

43. Kassab, M. M., S. U. El-Kameesy, M. M. Eissa, et al. "A study of neutron and gamma-ray interaction properties with cobalt-free highly chromium maraging steel," Journal of Modern Physics, Vol. 6, No. 11, 1526, 2015.

44. Al-Buriahi, M. S., Y. S. M. Alajerami, A. S. Abouhaswa, Amani Alalawi, Tanin Nutaro, and Baris Tonguc, "Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses," Journal of Non-Crystalline Solids, Vol. 544, 120171, 2020.

45. Kumar, Ashok, "Gamma ray shielding properties of PbO-Li2O-B2O3 glasses," Radiation Physics and Chemistry, Vol. 136, 50-53, 2017.

46. Halimah, M. K., A. Azuraida, M. Ishak, and L. Hasnimulyati, "Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass," Journal of Non-Crystalline Solids, Vol. 512, 140-147, 2019.

47. Alotaibi, B. M., M. I. Sayyed, Ashok Kumar, Mohammed Alotiby, Amandeep Sharma, Haifa A. Al-Yousef, Norah A. M. Alsaif, and Y. Al-Hadeethi, "Optical and gamma-ray shielding effectiveness of a newly fabricated P2O5–CaO–Na2O–K2O–PbO glass system," Progress in Nuclear Energy, Vol. 138, 103798, 2021.

48. Abdelghany, Y. A., M. M. Kassab, M. M. Radwan, and M. A. Abdel-Latif, "Borotellurite glass system doped with ZrO2, potential use for radiation shielding," Progress in Nuclear Energy, Vol. 149, 104256, 2022.

49. Alyami, Wadha, Sara A. El-khateeb, Essam M. Alkhybari, Layal K. Jambi, and Ibrahim E. Saad, "Highly transparent glass of barium-reinforced borotellurite as a protective material from gamma rays," Optical and Quantum Electronics, Vol. 56, No. 4, 613, Feb. 2024.

50. Srinivas, B., Ashok Bhogi, Pallati Naresh, M. Narasimha Chary, Md. Shareefuddin, Z. A. Alrowaili, Zakaria M. M. Mahmoud, I. O. Olarinoye, and M. S. Al-Buriahi, "Fabrication, optical and radiation shielding properties of BaO-TeO2-B2O3-Cr2O3 glass system," Optik, Vol. 258, 168877, 2022.

51. Alothman, Miysoon A., I. O. Olarinoye, Chahkrit Sriwunkum, Sultan Alomairy, Jamila S. Alzahrani, and M. S. Al-Buriahi, "Study of the radiation attenuation properties of MgO-Al2O3-SiO2-Li2O-Na2O glass system," Journal of the Australian Ceramic Society, Vol. 58, 267-273, Feb. 2022.

52. Alothman, Miysoon A., Z. A. Alrowaili, Ateyyah M. Al-Baradi, Ozge Kilicoglu, C. Mutuwong, and M. S. Al-Buriahi, "Elastic properties and radiation shielding ability of ZnO-P2O5/B2O3 glass system," Journal of Materials Science: Materials in Electronics, Vol. 32, No. 14, 19203-19217, Jun. 2021.

53. Boukhris, Imed, Imen Kebaili, M. S. Al-Buriahi, Baris Tonguc, Maha M. AlShammari, and M. I. Sayyed, "Effect of bismuth oxide on the optical features and gamma shielding efficiency of lithium zinc borate glasses," Ceramics International, Vol. 46, No. 14, 22883-22888, 2020.

54. Al-Buriahi, M. S., M. I. Sayyed, and Y. Al-Hadeethi, "Role of TeO2 in radiation shielding characteristics of calcium boro-tellurite glasses," Ceramics International, Vol. 46, No. 9, 13622-13629, 2020.